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Abstract
In recent years, reservoir-based spatiotemporal importance resampling

(ReSTIR) algorithms appeared out of nowhere to take parts of the real-time

rendering community by storm, with sample reuse speeding direct lighting

from millions of dynamic lights [1], diffuse multi-bounce lighting [2],

participating media [3], and even complex global illumination paths [4].

Highly optimized variants (e.g. [5]) can give 100× efficiency improvement

over traditional ray- and path-tracing methods; this is key to achieve 30

or 60 Hz framerates. In production engines, tracing even one ray or path

per pixel may only be feasible on the highest-end systems, so maximizing

image quality per sample is vital.

ReSTIR builds on the math in Talbot et al.’s [6] resampled importance

sampling (RIS), which previously was not widely used or taught, leaving

many practitioners missing key intuitions and theoretical grounding. A firm

grounding is vital, as seemingly obvious "optimizations" arising during

ReSTIR engine integration can silently introduce conditional probabilities

and dependencies that, left ignored, add uncontrollable bias to the results.

In this course, we plan to:

1. Provide concrete motivation and intuition for why ReSTIR works,

where it applies, what assumptions it makes, and the limitations of

today’s theory and implementations;

2. Gently develop the theory, targeting attendees with basic Monte Carlo

sampling experience but without prior knowledge of resampling

algorithms (e.g., Talbot et al. [6]);

3. Give explicit algorithmic samples and pseudocode, pointing out

easily-encountered pitfalls when implementing ReSTIR;

4. Discuss actual game integrations, highlighting the gotchas, chal-

lenges, and corner cases we encountered along the way, and high-

lighting ReSTIR’s practical benefits.

Course Format & Prerequisites
This is 3 hr course of intermediate difficulty level.

We assume attendees understand basic ray tracing and calculus. We hope

attendees will have seen the rendering equation, Monte Carlo integra-

tion, importance sampling, and related statistics, but we will provide a

brief review of these concepts as we gently introduce the mathematics of

resampling and ReSTIR.

Target Audience
This course targets students, researchers, and rendering engineers inter-

ested in the efficiency gains resampling promises for real-time rendering

but have not read or closely followed recent papers, have difficulty gaining

intuition for the mathematics of resampling, have questions about corner

cases, desire to hear about the challenges and benefits of integrating ReSTIR
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in production renderers, or wonder what open problems remain that may

motivate future research.

Our technical content starts by reviewing basic Monte Carlo integration,

but we will not spend significant time on this review. Our audience should

have at least passing familiarity with traditional Monte Carlo integration

and importance sampling, e.g., from a graduate computer graphics or

image synthesis course.

Why a SIGGRAPH Course in 2023?
After our first ReSTIR paper [1], the algorithm looked very compelling

but we felt our knowledge of its full abilities and constraints was limited.

With subsequent papers expanding our knowledge [2–5, 7, 8] and our

experience taking the research to shipping products [9–11], we now feel

confident we can present a usable, understandable, and theoretically sound

introduction.

Contemporaneous to our work, we have seen a large uptick in ReSTIR

Twitter discussions, blog posts on deciphering our theory [12–14], vir-

tual graphics meetups to learn ReSTIR, slides from graduate graphics

courses [15], indie and R&D game developer experiments [16, 17], publi-

cations from other labs [18–23], plugins for modelling packages [24, 25],

and student final project implementations floating around on the web, in

addition to the usual smattering of e-mail queries asking for more details.

This variety and quantity of interest suggests a coherent, gentle introduction

to resampling theory would be welcomed by the rendering community,

help accelerate further research and adoption, and reduce independently

duplicated stumbles on the more common pitfalls encountered when using

ReSTIR.

Course Syllabus (3 hours)

Topic Speaker

5 min Welcome and introduction Wyman
15 min Motivation; why consider ReSTIR? Yuksel

20 min Resampled importance sampling (RIS) Kettunen
15 min RIS and direct lighting Bitterli
15 min Spatiotemporal sample reuse and MIS Bitterli

15 min Reusing samples between domains Kettunen
20 min Extending sample reuse to paths Lin

15 min Making ReSTIR fast: sampler optimization Lin
15 min Making ReSTIR fast: low-level optimization Wyman

25 min ReSTIR integration in Cyberpunk 2077 Kozlowski &

De Francesco

10 min Open problems and future directions All
10 min Audience Q & A All
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Introduction 1
1.1 Motivation for ReSTIR . . . . 2Real-time path tracing targeting movie-quality results is a challenging goal.

Real-time renderers are often limited to 16 ms per frame on one graphics

processing unit (GPU), not hours or days on a render farm, as in many

offline renderers. In a real-time context, maximizing efficiency is the primary
goal, and this goal encourages cross-reuse of information between different

pixels and across frames. ReSTIR [1], the iterated application of RIS [6],

allows unbiased sample reuse from a large number of frames by repeatedly

aggregating multiple neighbor samples into one sample of higher quality.

A common question from experienced practitioners asks, “how can you

even ensure neighboring samples are relevant to your current pixel?” This

is a perceptive question. And the answer is, “very, very carefully.” In fact,

accounting for sample supports and domains is the key challenge with

ReSTIR (e.g., see Section 3.2).

But with a bit of thought, it is not very surprising that sample reuse works.

After all, modern denoisers [26, 27] and upsamplers reuse and filter colors

across pixels. That, too, can be seen as sample reuse between integrands

with varying domains. Usually post-process denoisers entirely ignore the

support issue, which is why they often reduce energy (among other kinds

of bias).

The enormous advantage of RIS and ReSTIR is they (largely) filter, resam-

ple, and reuse samples before throwing any information away. This allows

constructing unbiased algorithms as we have access to intermediate proba-

bilities, distributions, and samples; post-process denoising can only access

colors plus a few explicit guide buffers (usually from the G-buffer [28]).

Hence, one way to understand ReSTIR is: a filtering technique for sampling

distributions—aggregating multiple samples into one with a better PDF.

If blending colors in a denoiser improves image quality, maybe we could

reduce noise by filtering our PDFs?

In fact, path guiding techniques [29] have shown filtering PDFs can help:

they learn sample distributions by fitting PDF families to old samples.

ReSTIR streamlines this by skipping the learning—the PDF improves

by repeated weighted reuse of existing samples from other pixels and

frames.

In any case, the fact ReSTIR works should not be surprising; it resembles

many prior, widely used sampling techniques. One of its key contributions

is allowing lazy, streaming, GPU-accelerated variants of these algorithms

using weighted reservoir sampling [30].
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1.1 Motivation for ReSTIR

We assume that the reader is familiar with the path integral formulation

of light transport [31]: the incident radiance to a pixel is given by the total

over all possible paths from all emitters to the sensor:

𝐼𝑖 =

∫
Ω

ℎ𝑖(𝑥) 𝑓 (𝑥)d𝑥, (1.1)

where Ω contains all paths of all lengths, ℎ𝑖 is the image filter for the pixel,

𝑓 is the measurement contribution function, and d𝑥 is the product-area

measure.

With a box filter assumption (generalizing to more complex filters is

straightforward), we can define a per-pixel domain Ω𝑖 that only includes

paths that pass through the pixel,

𝐼𝑖 =

∫
Ω𝑖

𝑓 (𝑥)d𝑥 . (1.2)

Path tracers utilize this by randomly sampling paths 𝑋 from the camera

to the scene, letting the paths bounce at interactions, and contributing the

radiance 𝑓 (𝑋) carried by the path, divided by its sampling probability

density 𝑝(𝑋), giving a Monte Carlo estimator for 𝐼𝑖 :

⟨𝐼𝑖⟩ =
𝑓 (𝑋)
𝑝(𝑋) ≈ 𝐼𝑖 . (1.3)

This estimate ⟨𝐼𝑖⟩ is unbiased, i.e., correct on average (in terms of signed

error), but noisy. The more the PDF 𝑝 deviates from 𝑓 , the noisier ⟨𝐼𝑖⟩
becomes. A perfect match, where 𝑝 ∼ 𝑓 , gives no noise, i.e., a zero-variance

estimate.

This noise can also be decreased by averaging more samples as

⟨𝐼𝑖⟩ =
1

𝑁

𝑁∑
𝑗=1

𝑓 (𝑋𝑗)
𝑝(𝑋𝑗)

, (1.4)

but averaging quickly becomes inefficient. Each halving of noise magnitude

requires four times the samples. Whenever possible, it is better to make

the density 𝑝 more closely match 𝑓 . But, this is the fundamental challenge

of light transport: predicting the paths that carry a lot of light is hard, so

matching 𝑝 to 𝑓 is hard.

This leads to ReSTIR’s key premise: while nearby pixels clearly see some-

what different light paths, similar paths still tend to be important for

neighbors. Hence, a good path for pixel 𝑎, when reused for pixel 𝑏 with

minor modifications, tends to be useful for pixel 𝑏. This allows improving

pixel 𝑏’s estimate by reusing good samples from pixel 𝑎.

But, how do we know what paths are good? Good paths carry radiance,

i.e., have large 𝑓 . But we cannot arbitrarily choose to reuse some paths
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more without relying on solid mathematical theory, or we will introduce

bias. Besides, our goal is producing samples with probability density

proportional to 𝑓 . We do not aim to just produce the high-contribution

samples.

This is where resampled importance sampling (RIS) helps [6]. Given a

sequence of inputs (𝑋1 , . . . , 𝑋𝑀), RIS calculates weights 𝑤𝑖 for all inputs

and chooses one sample proportionally to the 𝑤𝑖 ’s such that this selected

sample’s probability density is (usually) closer to 𝑓 . RIS aggregates many

samples into one sample that is better-distributed. Simplifying a bit, this

is why RIS is useful: RIS is an aggregation machine. It takes a number of

candidate samples as inputs, and aggregates them into one sample with a

better 𝑝, decreasing noise.

While this one output sample is not better than all inputs combined,

aggregration has a clear advantage: the output is just one sample, not 𝑀

samples. Processing just one sample is generally cheaper than processing

𝑀 samples, and this cost difference increases drastically if we chain RIS, i.e.,

resample from RIS-aggregated samples. Assume a RIS resampling from 𝑀2

samples, that each aggregate 𝑀1 samples from the prior frame. The output

is an aggregation of 𝑀1 ×𝑀2 samples, while it costs less than 𝑀1 +𝑀2

samples, as borrowing samples tends to be cheaper than generating new

ones and the 𝑀1 part was already paid for in the previous frame.

Imagine RIS aggregation iteratively over frames. Every frame, take a new

sample for each pixel. Then, combine this new sample with aggregated

samples from the previous frame plus samples borrowed from neighboring

pixels. While the RIS results are at best as good as combining the individual

inputs, imagine if we could aggregate (for instance) 1920 × 1080 × 10

samples for each pixel, but at roughly the cost of one sample each frame. While

such massive aggregation may not be possible in practice, iterated RIS

(also known as ReSTIR), often improves image quality equivalent to using

hundreds of independent samples per pixel, but at minimal cost.



Definition 2.1.1 (Uniform distribution)

In a uniform distribution, every possible
sample value has an equal probability (den-
sity).

Definition 2.1.2 (Convergence in prob-

ability) Estimator ⟨𝐼⟩ converges in prob-

ability if, regardless of threshold 𝜀, the
probability that |⟨𝐼⟩ − 𝐼 | > 𝜀 approaches
zero for large 𝑀.

Preliminaries 2
2.1 Monte Carlo integration . . . 4
2.2 Supports . . . . . . . . . . . . 5
2.3 Multiple Importance Sam-

pling . . . . . . . . . . . . . . . 6
2.4 Unbiased Contribution

Weights . . . . . . . . . . . . . 7

Before we go into the details of RIS and ReSTIR, we will briefly cover some

preliminaries. Readers already familiar with random variables, supports,

and Monte Carlo integration may want to skip to 3.

2.1 Monte Carlo integration

Monte Carlo (MC) integration is a technique for numerically approximating

integrals. Given an integral of the form

𝐼 =

∫
Ω

𝑓 (𝑥)d𝑥 , (2.1)

which may be intractable to compute in closed form, Monte Carlo integra-

tion approximates 𝐼 using 𝑀 randomly-selected samples 𝑋1 , . . . , 𝑋𝑀 . The

function 𝑓 is evaluated only 𝑀 times, once for each of these samples.

Notation: We use capital letters 𝑋 to refer to random variables, in contrast to

traditional variables 𝑥 in Equation 2.1. This will be important when writing

equations that include both random and traditional variables, making the

math more readable and the potential issues easier to spot.

When using a uniform distribution for selecting random samples𝑋1 , . . . , 𝑋𝑀 ,

we can write the Monte Carlo (MC) estimator as

𝐼 ≈ ⟨𝐼⟩ = |Ω| 1

𝑀

𝑀∑
𝑖=1

𝑓 (𝑋𝑖) . (2.2)

Thus, the MC estimator in this case is a simple average of 𝑓 (𝑋𝑖) values

computed at 𝑀 sample values, scaled by the size of the integration domain

|Ω|. Here, ⟨𝐼⟩ is an estimator of 𝐼. It is itself a random variable, which

implies that its exact value may not necessarily match the integral. However,

provided that the random samples 𝑋𝑖 cover the entire integration domain

Ω, ⟨𝐼⟩ will have the correct expected value: 𝔼[⟨𝐼⟩] = 𝐼. In other words, it will

return the correct answer on average. Moreover, this estimator is consistent,
meaning that as 𝑀 goes to infinity, ⟨𝐼⟩ converges to 𝐼.

It is often advantageous to use a non-uniform distribution of random

samples, such that each sample 𝑋 is associated with a probability of

selecting it. The probability density of a continuous random variable 𝑋 is

given by its probability density function (PDF), often denoted 𝑝, as 𝑝(𝑋).
With a non-uniform distribution, we can no longer use a simple average

and expect to get the correct result. Instead, we must weigh the function

evaluations based on their chance of being sampled: locations that have a

lower chance of being sampled should get a higher weight to ensure that
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1: The uniform distribution corresponds

to a constant PDF of 𝑝𝑖(𝑋𝑖) = 1/|Ω|,
which reduces Equation 2.3 to Equa-

tion 2.2.

2: A perfect PDF 𝑝(𝑥)would differ from

𝑓 (𝑥) by a constant scale factor.

3: With a perfect PDF, 𝑓 (𝑥)/𝑝(𝑥) = 𝐼 for

all 𝑥 ∈ Ω.

4: MC estimator variance can be written

as Var [⟨𝐼⟩] = 𝔼[
(
⟨𝐼⟩ − 𝔼[⟨𝐼⟩]

)
2

] .

Definition 2.2.1 (Function support)

The support of function 𝑓 , supp( 𝑓 ), is
the set of all 𝑥 where 𝑓 (𝑥) ≠ 0.

Definition 2.2.2 (Variable support) The
support of random variable 𝑋, supp(𝑋),
is the set of all values that 𝑋 can take.

𝔼[⟨𝐼⟩] = 𝐼. This leads to a more general form of MC estimator

⟨𝐼⟩ =
𝑀∑
𝑖=1

1

𝑀

𝑓 (𝑋𝑖)
𝑝𝑖(𝑋𝑖)

, (2.3)

where the contribution of each sample 𝑋𝑖 is divided by its probability

density
1 𝑝𝑖(𝑋𝑖). Notice that the probability density function 𝑝𝑖 can be

different for each sample. Though it is commonplace to use the same

PDF for all samples, combining samples with different PDFs is a crucial

component of ReSTIR.

Typically, as 𝑀 increases, ⟨𝐼⟩ becomes more likely to be close to 𝐼. Yet, it is

also possible to use 𝑀 = 1, such that

⟨𝐼⟩ = 𝑓 (𝑋)
𝑝(𝑋) . (2.4)

One might expect this to be a highly inaccurate estimator, but, in fact, its

accuracy depends on the PDF and how it relates to 𝑓 . For example, if

𝑓 (𝑥)/𝑝(𝑥) is a constant value for all 𝑥 ∈ Ω, such a 𝑝 is considered a perfect
PDF

2
and a single sample is sufficient to perfectly estimate 𝐼. Yet, defining a

perfect PDF is typically impractical, because it requires knowing the value

of 𝐼 ahead of integration
3
. The goal of ReSTIR is to bring the effective PDF

as close as possible to the perfect PDF, such that a small number of samples

(such as a single sample) can provide a good MC estimator.

We measure the quality/accuracy of an MC estimator by its variance4
, which

is the expected (squared) difference of a particular estimation ⟨𝐼⟩ from the

expected value 𝔼[⟨𝐼⟩]. The lower the variance, the better the accuracy of

the MC estimator, which means less noise. Two common approaches for

reducing the variance are increasing the sample count 𝑀 and improving

the PDF by making 𝑝 a better representative of 𝑓 (times a constant scale

factor). ReSTIR provides a mechanism for the latter approach.

Deviation of the expected value 𝔼[⟨𝐼⟩] from 𝐼 is called bias; an algorithm

without bias is called unbiased. The MC estimator described above is

unbiased under relatively mild conditions we explain below, but breaking

the conditions can introduce bias.

2.2 Supports

A function’s support is simply a fancy name for the part where it is nonzero.

For example, the support of the path contribution function 𝑓 is all paths

that carry radiance to the camera. The support of max(1 − |𝑥 | , 0) is (−1, 1).
We denote the support of a function 𝑓 by supp( 𝑓 ).

A random variable’s support is the values it can take. A uniform random

variable 𝑋 from 0 to 1 has support supp(𝑋) = [0, 1]. A discrete random

variable’s support is the values it can take with a positive probability. A

continuous random variable’s support is the values it can take with a

positive probability density.
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Tip 2.1 It would be confusing to write

𝔼

[
𝑓 (𝑥)
𝑝(𝑥)

]
=

∫
supp(𝑥)

𝑓 (𝑥)d𝑥,

overloading the same symbol 𝑥 to

mean a specific random variable (𝑥)

and an integration variable (𝑥). It is

unclear which lowercase 𝑥 refers to the

random variable; hence, our capitaliza-

tion convention:

𝔼

[
𝑓 (𝑋)
𝑝(𝑋)

]
=

∫
supp(𝑋)

𝑓 (𝑥)d𝑥,

[32]: Veach et al. (1995), ‘Optimally Com-

bining Sampling Techniques for Monte

Carlo Rendering’

5: In fact, the conditions guarantee the

union of all supp(𝑋𝑖) covers 𝑓 .

The connection between the two concepts with the same name is that if

𝑋 has PDF 𝑝, then supp(𝑋) = supp(𝑝), and similarly for discrete random

variables and probabilities.

MC integration requires only one condition for unbiasedness: The support

of 𝑋 must contain the support of 𝑓 , i.e., supp( 𝑓 ) ⊆ supp(𝑋); we say 𝑋

“covers” 𝑓 for short. It is easy to see why:

𝔼
𝑋
[⟨𝐼⟩] =

∫
supp(𝑋)

𝑓 (𝑥)
𝑝(𝑥) · 𝑝(𝑥)d𝑥 =

∫
supp(𝑋)

𝑓 (𝑥)d𝑥. (2.5)

MC integration only occurs over the support of 𝑋 , and any values of 𝑓 that

lie outside of it will be ignored. Traditionally, this requirement is written

as 𝑝(𝑥) > 0 if 𝑓 (𝑥) > 0; although it is generally well-known, it rarely poses

an issue in practice and does not usually factor into algorithm design.

However, ReSTIR-derived techniques differ from the norm and easily

run afoul of this requirement. Because ReSTIR mixes samples from many

distributions (neighboring or past pixels, etc.) that do not necessarily cover

the integrand, we need to take extra care to ensure unbiasedness. We

will point these issues out throughout this course, and it is an important

issue to keep in mind when designing and implementing ReSTIR-based

techniques.

2.3 Multiple Importance Sampling

MIS [32] is a way of efficiently combining samples from multiple random

variables. Consider the naive MC estimator in Equation 2.3. There are

two big problems with it: not every random variable is equally good at

sampling 𝑓 everywhere, but in Equation 2.3 we add their variances, giving

us the worst of all worlds. Simultaneously, we may end up with bias if any
of the random variables do not cover 𝑓 .

MIS solves both of these issues by performing a weighted combination

instead:

⟨𝐼⟩ =
𝑀∑
𝑖=1

𝑚𝑖(𝑋𝑖)
𝑓 (𝑋𝑖)
𝑝𝑖(𝑋𝑖)

, (2.6)

where 𝑚𝑖(𝑋𝑖) is the MIS weight of the 𝑖th random variable. In order for

Equation 2.6 to be unbiased, the MIS weights must satisfy two conditions:

▶
∑

𝑖 𝑚𝑖(𝑥) = 1 for any 𝑥 within the support of 𝑓 , and

▶ 𝑚𝑖(𝑥) = 0 if 𝑥 ∉ supp(𝑋𝑖).

This ensures unbiased results when the union of all supp(𝑋𝑖) covers 𝑓 .5

The simple average in Equation 2.3 corresponds to 𝑚𝑖 = 1/𝑀 and is only

unbiased if all 𝑋𝑖 cover 𝑓 . Usually, a better choice is the balance heuristic

𝑚𝑖(𝑥) =
𝑝𝑖(𝑥)∑
𝑗 𝑝 𝑗(𝑥)

, (2.7)
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6: That is, if the 𝑚𝑖 are assumed positive.

Negative weights can do even better [33].

[34]: Woodcock et al. (1965), ‘Techniques

Used in the GEM Code for Monte Carlo

Neutronics Calculations in Reactors and

Other Systems of Complex Geometry’

[35]: Jensen (1996), ‘Global Illumination

Using Photon Maps’

7: With the assumption that 𝑋 covers 𝑓 .

[36]: Qin et al. (2015), ‘Unbiased Photon

Gathering for Light Transport Simulation’

[37]: Zeltner et al. (2020), ‘Specular

Manifold Sampling for Rendering High-

Frequency Caustics and Glints’

[1]: Bitterli et al. (2020), ‘Spatiotemporal

Reservoir Resampling for Real-Time Ray

Tracing with Dynamic Direct Lighting’

[6]: Talbot et al. (2005), ‘Importance Re-

sampling for Global Illumination’

[4]: Lin et al. (2022), ‘Generalized Resam-

pled Importance Sampling’

which is an “optimal” weighting scheme in a variance sense
6
.

2.4 Unbiased Contribution Weights

So far, we assumed that the PDF 𝑝(𝑥) can be evaluated in closed form.

However, if generating a sample from 𝑋 is a complicated process—such

as Woodcock tracking [34] or photon mapping [35]—evaluating 𝑝(𝑋)
may be completely intractable. Luckily, we can still perform unbiased MC

integration as long as we know a random variable 𝑊𝑋 whose expected value,
given 𝑋 , matches the reciprocal PDF, 𝔼[𝑊𝑋 |𝑋] = 1/𝑝(𝑋). Then we may use

the modified MC estimator
7

⟨𝐼⟩ = 𝑓 (𝑋) ·𝑊𝑋 with 𝔼[ 𝑓 (𝑋) ·𝑊𝑋] = 𝔼[ 𝑓 (𝑋)/𝑝(𝑋)] = 𝐼. (2.8)

It is very surprising that there should be simple formulas allowing such

𝑊𝑋 to be evaluated even when 𝑝(𝑋) cannot! Yet, multiple instances of this

exist in graphics [36, 37] and many more in other fields.

Samples produced with RIS also fall into this category: 𝑝(𝑋) is completely

intractable (a high-dimensional integral, dimensionality growing at each

resampling!) but a corresponding 𝑊𝑋 exists, with a very cheap formula [1,

6]. In the context of RIS, we term 𝑊𝑋 an unbiased contribution weight [4],

and it is key to generalized reuse across domains, as we will soon see.



Definition 3.0.1 (Unbiased Contribu-

tion Weight) An unbiased contribution
weight 𝑊𝑋 is a random variable such that
regardless of 𝑓 :

𝔼 [ 𝑓 (𝑋)𝑊𝑋 ] =
∫
Ω

𝑓 (𝑥)d𝑥.

Tip 3.1 We write 𝑊𝑋 instead of 𝑊(𝑋):
this is not a function since it cannot be

evaluated at arbitrary 𝑋 . Do not use in

MIS weights!

[6]: Talbot et al. (2005), ‘Importance Re-

sampling for Global Illumination’

Resampled Importance Sampling 3
3.1 Resampled Importance

Sampling . . . . . . . . . . . . 9
3.2 MIS weights . . . . . . . . . . 12
3.3 Example: RIS between BSDF

and NEE . . . . . . . . . . . . . 13
3.4 Inputs with unknown PDFs 13

The effectiveness of importance sampling depends on the PDF used for

generating the samples. However, we often do not have an explicit formula-

tion for the ideal PDF and, even when we do, it may be difficult/impossible

to generate random samples with the exact PDF we want.

Resampled importance sampling (RIS) provides a solution for these prob-

lems. It takes as input a sequence of candidate samples (𝑋1 , . . . , 𝑋𝑀), gives

each candidate a resampling weight 𝑤𝑖 , picks one of the 𝑋𝑖 at random,

proportionally to the weights 𝑤𝑖 , and outputs the selected sample. This

process is equivalent to generating samples with a PDF that can be different

than the one used for generating the candidate samples. We can control

the resulting PDF based on how we assign the resampling weights.

Candidates are continuous random variables, and the output is a con-

tinuous random variable—hence, despite the discrete selection, RIS can

be compared to path guiding: it is given random variables (“samples”),

and it outputs a continuous random variable with a different distribution.

In contrast to traditional path guiding, however, RIS does not learn a

distribution based on existing samples, but reuses one (or more) of them at

random, effectively aggregating multiple samples into one with a better

probability density, sometimes compared to filtering the distributions. Simi-

lar to path guiding, the output is a continuous random variable with an

improved distribution, a PDF 𝑝 that matches 𝑓 better and thus produces

less variance.

But of course, there is a catch.

The PDF of the sample produced by RIS is typically intractable and cannot

be evaluated in real-time. Evaluating the PDF is at least as hard as shading

the pixel. So why do RIS and ReSTIR work? Why do we talk about them, if

the PDFs cannot be evaluated? Didn’t Monte Carlo integration require the

𝑝 so that we can evaluate 𝑓 (𝑥)/𝑝(𝑥)?

Let’s think—what’s the role of 1/𝑝(𝑋) in the 𝑓 (𝑋)/𝑝(𝑋) estimator? It’s a

weight for the sample 𝑓 (𝑋). Is this weight needed? Yes, absolutely. Does the

weight need to be a PDF? Not exactly. What? Well, you see, RIS provides

the sample 𝑋 a weight, which we denote 𝑊𝑋 . This weight produces an

unbiased contribution 𝑓 (𝑋)𝑊𝑋 that estimates the integral of 𝑓 . Weights

are needed, but they need not be PDFs.

This 𝑊𝑋 replaces the weight 1/𝑝(𝑋), but a single sample 𝑋 can have many

different valid 𝑊𝑋 , depending on which candidate samples (𝑋1 , . . . , 𝑋𝑀)
were used to select 𝑋 . In other words, 𝑊𝑋 is not a deterministic function of

𝑋 . It is a random variable. These weights𝑊𝑋 replace the 1/𝑝(𝑋) factor, and

they are ubiquitous in RIS and ReSTIR theory. Hence, we should give them

a name. What could be a name for a weight that produces an unbiased

contribution? How about unbiased contribution weight?

The original exposition of resampled importance sampling [6], as well as
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[4]: Lin et al. (2022), ‘Generalized Resam-

pled Importance Sampling’

[4]: Lin et al. (2022), ‘Generalized Resam-

pled Importance Sampling’

Tip 3.2 Factor
1

𝑀
cancels out in

Pr [choose 𝑖] = 𝑤𝑖∑𝑀
𝑗=1

𝑤 𝑗

.

Tip 3.3 The sum

∑𝑀
𝑖=1

𝑤𝑖 estimates 𝑝̂’s

normalization: By Equation 3.2,

𝑀∑
𝑖=1

𝑤𝑖 = 𝑝̂(𝑋)𝑊𝑋

and with Definition 3.0.1,

𝔼

[
𝑀∑
𝑖=1

𝑤𝑖

]
= 𝔼 [𝑝̂(𝑋)𝑊𝑋 ] =

∫
Ω

𝑝̂(𝑥)d𝑥.

Domain: (intuitively) where an object

“lives”: real numbers live in ℝ, path

vertices live on the scene surfaces. A

generic domain is often denoted Ω.

𝑚𝑖(𝑋𝑖): the resampling MIS weight of 𝑋𝑖 .

If all 𝑋𝑖 are identically distributed, use

𝑚𝑖 = 1/𝑀.

𝑊𝑋𝑖
: unbiased contribution weight

of 𝑋𝑖 . If 𝑋𝑖 has a known PDF 𝑝(𝑋𝑖), use

𝑊𝑋𝑖
= 1

𝑝(𝑋𝑖 )
.

Pr [choose 𝑖] = 𝑤𝑖∑𝑀
𝑗=1

𝑤 𝑗
.

Treat 𝑊𝑋 as 1/𝑝(𝑋) but note it is

an unbiased estimate, not a function of 𝑋 .

early ReSTIR papers (before the generalized theory [4]), used formulas

𝑤𝑖 =
𝑝̂(𝑋𝑖)
𝑝(𝑋𝑖)

and 𝑊𝑋 =
1

𝑝̂(𝑋)

(
1

𝑀

𝑀∑
𝑖=1

𝑤𝑖

)
, (3.1)

to choose the result 𝑋 from the 𝑋𝑖 proportionally to resampling weights

𝑤𝑖 . Above, 𝑝̂(𝑥) is the target function that the PDF of 𝑋 approximates better

and better with more and more candidates. The unbiased contribution weight
for the chosen 𝑋 is 𝑊𝑋 , and it replaces 1/𝑝(𝑋). Even though the PDF is

intractable, it certainly exists and, if everything is done according to the

theory, converges to being proportional to 𝑝̂ when we add more samples.

We follow the generalized formulation [4] that moves the 1/𝑀 factor into

the resampling weights 𝑤𝑖 . This is equivalent, but gives simpler math and

algorithms. As we will see, the job of the 1/𝑀 is a resampling MIS weight. It

is not there to average of the 𝑤𝑖 weights, as suggested by Equation 3.1. The

exposition of RIS that we lay out is thus more akin to

𝑤𝑖 =
1

𝑀

𝑝̂(𝑋𝑖)
𝑝(𝑋𝑖)

and 𝑊𝑋 =
1

𝑝̂(𝑋)
𝑀∑
𝑖=1

𝑤𝑖 , (3.2)

where the 1/𝑀 weight will later turn into a resampling MIS weight 𝑚𝑖 ,

and the variance of the sum

∑𝑀
𝑖=1

𝑤𝑖 now has an intimate connection to

convergence: when the variance of

∑𝑀
𝑖=1

𝑤𝑖 approaches zero [4], the output

PDF approaches the target PDF, 𝑝̄ = 𝑝̂/
∫
𝑝̂. The contribution weight 𝑊𝑋

also approaches 1/𝑝̄(𝑋). Choosing 𝑝̂ = 𝑓 turns RIS into a zero-variance

estimator in the limit, producing samples proportionally to 𝑓 .

The target function 𝑝̂ is also sometimes (inaccurately) called the target PDF,

but this misnomer should be avoided; 𝑝̂ is an unnormalized function, often

just the integrand, 𝑝̂ = 𝑓 , or at least close to it. The 𝑝̂ however defines the

target PDF 𝑝̄; with more and more candidate samples, 𝑝 approaches 𝑝̄.

3.1 Resampled Importance Sampling

We define resampled importance sampling by the following process:

1. Take candidates (𝑋1 , . . . , 𝑋𝑀) in a common domain Ω.

2. Evaluate resampling MIS weights 𝑚𝑖(𝑋𝑖) for all 𝑋𝑖 .

3. Evaluate resampling weights 𝑤𝑖 = 𝑚𝑖(𝑋𝑖) 𝑝̂(𝑋𝑖)𝑊𝑋𝑖
for all 𝑋𝑖 .

4. Choose 𝑋 randomly from the 𝑋𝑖 proportionally to 𝑤𝑖 .

5. Evaluate the unbiased contribution weight 𝑊𝑋 = 1

𝑝̂(𝑋)
∑𝑀

𝑗=1
𝑤 𝑗 .

This process gives us a sample 𝑋 drawn from a PDF that is approximately

proportional to the target function 𝑝̂; increasingly so with more candidate

samples. While 𝑋 is one sample, it in a sense represents many; this repre-

sentation is encoded into its improved PDF, and reflected in the unbiased

contribution weight 𝑊𝑋 , as the PDF cannot in practice be evaluated. The

returned sample 𝑋 can be at best as good for integration as the candidates
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Algorithm 1: Resampled importance sampling.

Input :𝑀: number of candidates to generate.

Output :Sample 𝑌 and its unbiased contribution weight 𝑊𝑌

1 function randomIndex(𝑤
1
, . . . , 𝑤𝑀 ) // Choose 𝑠 proportionally to the 𝑤𝑖

2 𝑟 ← rand()
3 for 𝑠 ← 1 to 𝑀 do
4 if 𝑤𝑠 > 0 then
5 𝑟 ← 𝑟 − 𝑤𝑠/

∑
𝑖 𝑤𝑖

6 if 𝑟 ≤ 0 then
7 return 𝑠

8 return ∅

9 function ResampledImportanceSampling(𝑀)
// Generate candidates (𝑋1 , . . . , 𝑋𝑀 )

10 for 𝑖 ← 1 to 𝑀 do
11 generate 𝑋𝑖

12 𝑤𝑖 ← 𝑚𝑖(𝑋𝑖) 𝑝̂(𝑋𝑖)𝑊𝑋𝑖

// Select 𝑌 from the candidates

13 𝑌,𝑊𝑌 ← ∅, 0
14 𝑠 ← randomIndex(𝑤

1
, . . . , 𝑤𝑀 )

15 if 𝑠 ≠ ∅ then
16 𝑌 ← 𝑋𝑠

17 𝑊𝑌 ← 1

𝑝̂(𝑌)
∑

𝑖 𝑤𝑖

18 return 𝑌,𝑊𝑌

1: Formally, as conditional expectation,

𝔼 [𝑊𝑋 |𝑋] =
1

𝑝(𝑋) . (3.3)

2: Since most MIS weights have 𝑚𝑖 > 0

when 𝑝̂ > 0, implying 𝑤𝑖 > 0, supp(𝑋)
contains all 𝑥 with 𝑝̂(𝑥) > 0 that can

be generated by some of the inputs:

supp(𝑋) =
(
𝑀⋃
𝑖=1

supp(𝑋𝑖)
)
∩ supp(𝑝̂).

3: The general form is (see Equation 2.8)

𝔼 [ 𝑓 (𝑋)𝑊𝑋 ] =
∫

supp(𝑋)
𝑓 (𝑥)d𝑥, (3.5)

which again shows supp(𝑋) must cover

supp( 𝑓 ).

𝑋1 , . . . , 𝑋𝑀 combined (with the resampling MIS weights 𝑚𝑖). The unbiased

contribution weight 𝑊𝑋 works as the unknown 1/𝑝(𝑋) in Monte Carlo

integration. In fact, on average
1 𝑊𝑋 is 1/𝑝(𝑋).

To use the returned 𝑋, we must know what values it may take, i.e., its

support. This support is the union of the input supports, with 𝑥 where

𝑝̂(𝑥) = 0 removed
2
. To integrate 𝑓 using 𝑋, the target function 𝑝̂ must be

positive whenever 𝑓 is non-zero, and the inputs must together cover the

support of 𝑓 . If 𝑝̂(𝑥) = 0, 𝑥 is never selected by RIS. To avoid biasing our

estimate, we must be able to select samples across all of 𝑓 ’s support.

Given such a support, this allows unbiased integration without knowing

PDFs. Assuming the inputs together cover 𝑓 ’s support with positive 𝑝̂,

then so does the output, and the estimator

⟨𝐼⟩ = 𝑓 (𝑋)𝑊𝑋 (3.4)

is an unbiased estimate of the integral of 𝑓 :3

𝔼 [⟨𝐼⟩] =
∫
Ω

𝑓 (𝑥)d𝑥 = 𝐼. (3.6)

We show pseudo-code of basic RIS in Algorithm 1.

No samples produced? If all 𝑤𝑖 are zero and no sample can be chosen,

return a null sample, ∅, with 𝑊∅ = 0. As usual, do not replace the null
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4: Other than 𝑓 (∅) = 𝑝̂(∅) = 0, the null

sample gets no special treatment.

sample by immediately drawing another, as that causes bias—it is what

it is.
4

If passing a random variable with null sample realization to RIS,

include it in other samples’ MIS weights as usual: a null sample realization
does not invalidate the distribution.

Example 3.1.1 (Simple integration) Let us first study a simple case with

independent and identically distributed (iid) samples (𝑋1 , . . . , 𝑋𝑀)with

known PDF 𝑝 that covers 𝑓 , and 𝑝̂ > 0 in 𝑓 ’s support. Since we know the

input PDFs, we set 𝑊𝑋𝑖
= 1/𝑝(𝑋𝑖), and since the samples are identically

distributed, we use constant MIS weights
5

5: The choice 𝑚𝑖(𝑥) = 1

𝑀
can only be

used if all samples individually cover

supp( 𝑓 ), which is the case here.

: 𝑚𝑖(𝑥) = 1/𝑀.

We then evaluate the resampling weights

𝑤𝑖 = 𝑚𝑖(𝑋𝑖) 𝑝̂(𝑋𝑖)𝑊𝑋𝑖

=
1

𝑀

𝑝̂(𝑋𝑖)
𝑝(𝑋𝑖)

,

and choose index 𝑠 proportionally to the 𝑤𝑖 . We then set 𝑋 = 𝑋𝑠 and

evaluate Could we use the chosen sample’s contri-

bution weight, 𝑊𝑋 = 𝑊𝑋𝑠 ? That would

lead to bias! The sampling process must

be respected.

𝑊𝑋 =
1

𝑝̂(𝑋)
𝑀∑
𝑗=1

𝑤 𝑗 .

Since the support of 𝑋 now covers 𝑓 , ⟨𝐼⟩ = 𝑓 (𝑋)𝑊𝑋 is an unbiased

estimate of the integral of 𝑓 , i.e., Since 𝑊𝑋 is an unbiased contribution

weight, Equation 2.5 says

𝔼 [ 𝑓 (𝑋)𝑊𝑋 ] =
∫

supp(𝑋)
𝑓 (𝑥)d𝑥.

Since supp(𝑋) covers supp( 𝑓 ), we have

the result.

𝔼 [ 𝑓 (𝑋)𝑊𝑋] =
∫
Ω

𝑓 (𝑥)d𝑥.

In this example, we took 𝑀 iid candidates, selected one of them, and

integrated 𝑓 with the result. This can be done, but if all we did was

integrate, simply averaging the 𝑀 individual contributions would have

been just as good. But, we also got a sample 𝑋 that aggregates the

others in its PDF. In the next example, we will use this to improve

direction-sampling in a path tracer.

Example 3.1.2 (BSDF importance sampling) Let us repeat the previous

steps, but forget about the function 𝑓 . Our task is simply to provide a

sample with PDF approximately proportional to 𝑝̂. We repeat the above

steps: evaluate 𝑚𝑖 , 𝑤𝑖 , choose 𝑋 and evaluate 𝑊𝑋 . Assuming each input

sample covers 𝑝̂, we know that 𝑋 covers exactly 𝑝̂’s support.

Let us then pretend the 𝑋𝑖 are directions, importance sampled with a

PDF 𝑝. Our 𝑝̂ is, say, a cheaper proxy for the full BSDF 𝑓 [6] [6]: Talbot et al. (2005), ‘Importance Re-

sampling for Global Illumination’

with the same

support. We select one of the 𝑀 candidates proportionally to the 𝑤𝑖 . This

results in a sample 𝑋 with improved distribution, PDF approximately

proportional to the proxy 𝑝̂. We trace a ray in that direction and continue

path tracing. Our Monte Carlo estimator uses 𝑊𝑋 in place of 1/𝑝(𝑋) for

the sampled direction.

This method of improving the sample distribution can sometimes be
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Tip 3.4 Rule of thumb: Use 1/𝑀
weights if and only if all inputs are

identically distributed.

[32]: Veach et al. (1995), ‘Optimally Com-

bining Sampling Techniques for Monte

Carlo Rendering’

Tip 3.5 A MIS weight is a function

of one 𝑥. A weight that mixes PDFs

or other functions at different input

realizations 𝑥 𝑗 is most likely wrong.

Tip 3.6 Keep things simple during

implementation. Only replace the bal-

ance heuristic with an advanced vari-

ant once everything works and it is

time for performance!

[4]: Lin et al. (2022), ‘Generalized Resam-

pled Importance Sampling’

[7]: Bitterli (2022), ‘Correlations and Reuse

for Fast and Accurate Physically Based

Light Transport’

Definition 3.2.1 (Canonical sample,

simple case) An input 𝑋𝑖 to RIS is called
canonical if it covers 𝑝̂ (i.e., supp 𝑝̂ ⊂
supp𝑋𝑖 ).

useful with the right parameters, but a lot more can be done if we

allow mixing samples from different distributions, such as reusing from

different pixels or mixing BSDF-guided samples with light sampling.

Since the different samples cover different parts of the integration domain,

we need MIS weights.

3.2 MIS weights

While we began our introduction by talking about integrating a function 𝑓 ,

the direct purpose of RIS is to produce samples approximately proportion-

ally to 𝑝̂. It is only then that we worry about integration: if the union of the

candidates 𝑋𝑖 covers supp(𝑝̂), and supp(𝑝̂) covers supp( 𝑓 ), then 𝑋 joined

with UCW 𝑊𝑋 integrates 𝑓 without bias.

Earlier, we emphasized that in RIS and ReSTIR, supports matter. If the

candidate samples have different PDFs, such as when we reuse across

pixels, or we resample from candidates generated with a light sampler

and candidates generated with a BSDF importance sampler, we need more

advanced MIS weights than 1/𝑀.

If all inputs individually cover the support of the target function, 1/𝑀
MIS weights are technically unbiased. They could still result in terrible

outliers in areas hard for even one of the inputs. If even one input has zero

PDF anywhere where 𝑝̂ ≠ 0, the 1/𝑀 weights result in a biased 𝑊𝑋 .

When the input samples’ PDFs are known, we can replace the 1/𝑀 weights

with the balance heuristic [32], removing the bias:

𝑚𝑖(𝑥) =
𝑝𝑖(𝑥)∑𝑀
𝑗=1

𝑝 𝑗(𝑥)
. (3.7)

The balance heuristic evaluates the probability density of the given 𝑥 in all

the input distributions. While the MIS weight cares about the distributions

of the other inputs, it does not care about their realized values. An imple-

mentation that includes the other realizations in a sample’s MIS weight is

most likely wrong.

The Achilles’ heel of the balance heuristic is that it becomes expensive with

large sample counts: the MIS weight for each of the 𝑀 samples requires

evaluating 𝑀 PDFs, giving a 𝑂(𝑀2) time complexity. This is not a problem

for small sample counts, but large sample counts may benefit from more

advanced MIS weights such as the pairwise MIS [4, 7] (see Section 7.1.3 for

more discussion).

With correctly-computed MIS weights, the supports of individual distribu-

tions no longer must all cover the support of 𝑝̂. Instead their union must

cover 𝑝̂. In practice, this can be tricky to guarantee unless we have at least

one candidate 𝑋𝑖 designed to directly target 𝑝̂: a sample that covers all of

𝑝̂’s support. We call such a sample canonical (Definition 3.2.1), understand-

ing that advanced contexts may add more requirements. This enforces

supp(𝑋) = supp(𝑝̂) for the RIS output, allowing unbiased integration

within the support of 𝑝̂.
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Tip 3.7 Area PDFs can be converted

to solid angle by multiplying by the

geometry term, and solid angle PDFs

to area PDFs by dividing by it.

Tip 3.8 Start simple during implemen-

tation. Use the full integrand 𝑓 as 𝑝̂

and explicitly test and include visibility

terms. Only optimize for performance

once everything works!

Tip 3.9 Do you love difficult, very

frustrating debugging? Implement all

performance optimizations simultane-

ously, rather than starting with a base-

line implementation.

Tip 3.10 If 𝑝̂ = 𝑓 (the ideal case), the

contribution of one RIS sample 𝑋 is

𝑓 (𝑋)𝑊𝑋 =

𝑀∑
𝑖=1

𝑚𝑖(𝑋𝑖) 𝑓 (𝑋𝑖)𝑊𝑋𝑖

(3.10)

which does not depend on the cho-

sen candidate, and equals the Monte

Carlo estimate with the same candi-

dates. (When 𝑝̂ is not proportional to

𝑓 , the estimate may have more noise.)

In other words, by including a canonical sample covering supp(𝑝̂), or oth-

erwise covering supp(𝑝̂) with the candidates, the RIS output 𝑋 integrates

without bias any function within the support of 𝑝̂:

𝔼 [ 𝑓 (𝑋)𝑊𝑋] =
∫

supp(𝑝̂)
𝑓 (𝑥)d𝑥. (3.8)

3.3 Example: RIS between BSDF and NEE

Assume we want to produce a sample for direct illumination that we can

reuse. We draw 𝑀1 candidates from a BSDF importance sampler with PDF

𝑝1, and 𝑀2 candidates from a light sampler with PDF 𝑝2. The PDFs must

be converted to the same measure.

The balance heuristic [32] for the BSDF samples is then

𝑚𝑖(𝑥) =
𝑝1(𝑥)

𝑀1𝑝1(𝑥) +𝑀2𝑝2(𝑥)
. (3.9)

We evaluate the resampling weights

𝑤𝑖 = 𝑚𝑖(𝑋𝑖) 𝑝̂(𝑋𝑖)𝑊𝑋𝑖

=

(
𝑝1(𝑋𝑖)

𝑀1𝑝1(𝑥) +𝑀2𝑝2(𝑥)

)
𝑝̂(𝑋𝑖)

1

𝑝1(𝑋𝑖)
,

and similarly for the light samples but using 𝑝2 in the numerator in 𝑚𝑖

and in the denominator in 𝑊𝑋𝑖
. We recommend initially using 𝑝̂ = 𝑓 , the

full path contribution, for ease of implementation, and only testing more

performant alternatives after validating everything works with 𝑝̂ = 𝑓 .

Next, we choose index 𝑠 proportionally to the 𝑤𝑖 , set 𝑋 = 𝑋𝑠 , and

𝑊𝑋 =
1

𝑝̂(𝑋)
𝑀1+𝑀2∑

𝑗=1

𝑤 𝑗 .

This unbiased contribution weight replaces the intractable 1/𝑝(𝑋) factor.

We now have a better-distributed sample 𝑋 for direct illumination, covering

the full support of 𝑓 , which is ready to share with other pixels.

Technically, using 1/(𝑀1 + 𝑀2) MIS weights does not result in bias,

since both PDFs cover all contributing direct illumination. However, the

noise level would be as if evaluating direct illumination with only BSDF

sampling—terrible. MIS weights in RIS are just as important as in traditional

Monte Carlo integration.

3.4 Inputs with unknown PDFs

As before, assume a sequence of inputs (𝑋1 , . . . , 𝑋𝑀) with varying dis-

tributions. Assume the inputs are sampled with RIS, and we only know

unbiased contribution weights 𝑊𝑋1
, . . . ,𝑊𝑋𝑀

.
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Tip 3.11 Samples coming from RIS

have the same supports as their tar-

get functions, supp(𝑝𝑖) = supp(𝑋𝑖) =
supp(𝑝̂𝑖), and generally approximate

the target PDF better with more inputs,

especially after iterative resampling.

[4]: Lin et al. (2022), ‘Generalized Resam-

pled Importance Sampling’

Tip 3.12 Since the

∫
𝑝̂𝑖 are not normal-

ized, this could distort MIS weights

if the

∫
𝑝̂𝑖 have significant variation

across pixels.

6: I.e., 𝑝̂ = 0 exactly when 𝑝 = 0.

Definition 3.4.1 (Canonical sample,

𝑝̂𝑖 -MIS) An input 𝑋𝑖 to RIS is called
canonical if it uses 𝑝̂𝑖 = 𝑝̂ and covers 𝑝̂
(i.e., supp 𝑝̂ ⊂ supp𝑋𝑖 ).

Tip 3.13 A sample 𝑋𝑖 that does not

come from RIS can be used with 𝑝̂𝑖 -

based MIS weights, if 𝑋𝑖

▶ is given a target function 𝑝̂𝑖
▶ covers supp(𝑝̂𝑖)
▶ is replaced with a null sample

∅ if 𝑝̂𝑖 = 0.

This guarantees supp(𝑋𝑖) = supp(𝑝̂),
making 𝑝̂𝑖 -based MIS weights unbi-

ased, even if not always ideal.

Tip 3.14 MIS weights of null samples

always zero, 𝑚𝑖(∅) = 0 .

We already know how to use RIS with unbiased contribution weights.

The challenge is the MIS weights: we cannot use anything that requires

knowing the PDFs.

As input samples are generated with RIS, they are distributed approximately

proportionally to the target functions 𝑝̂𝑖 used for resampling; we assume

each input is associated with a target function 𝑝̂𝑖 that we will use as a proxy

for the unknown PDFs 𝑝𝑖 .

This results in the following, generalized balance heuristic [4]:

𝑚𝑖(𝑥) =
𝑝̂𝑖(𝑥)∑𝑀
𝑗=1

𝑝̂ 𝑗(𝑥)
. (3.11)

At each iteration, we guarantee that the random variables’ supports exactly

match that of their target function
6
; this guarantees unbiasedness. We do

this by adding a canonical sample if the candidates 𝑋𝑖 would not otherwise

cover the target function 𝑝̂.

We form a canonical sample 𝑋𝑐 by RIS from one or more iid samples with

PDF covering supp(𝑝̂). Multiple candidates are often recommended for a

good distribution, but a single candidate can be used as well.

With these MIS weights, we are well equipped for reusing samples be-

tween pixels and frames, but only within the same domain and without

modification at reuse.



1: ReSTIR literature often also calls the

RIS inputs candidate samples. Both terms

are correct.

[30]: Chao (1982), ‘A General Purpose Un-

equal Probability Sampling Plan’

2: Evaluating MIS weights 𝑚𝑖(𝑋𝑖) may

require knowing the distributions of the

other inputs, but not their realizations.

[1]: Bitterli et al. (2020), ‘Spatiotemporal

Reservoir Resampling for Real-Time Ray

Tracing with Dynamic Direct Lighting’
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The RIS algorithm is an effective way of improving the distribution of

samples. However, for complex target functions 𝑝̂ and poorly distributed

initial candidates, the number 𝑀 of candidates required for good sampling

might far exceed the computational budget. Spatiotemporal Reservoir

Resampling (ReSTIR) addresses this issue by chaining invocations of RIS

and reusing samples spatially and temporally. We begin this chapter by

introducing reservoir resampling, a practical improvement on RIS, before

describing spatiotemporal reuse.

4.1 Weighted Reservoir Sampling

In order to select the output sample, the RIS algorithm in Algorithm 1 needs

to generate and store all candidates
1

up-front before selecting the output

sample in a second pass. This can be a nuisance in practice, especially on

parallel systems such as GPUs.

Weighted reservoir sampling (WRS) [30] is a family of algorithms for

sampling one (or more) elements from a (weighted) stream of samples in

a single pass over the data without storing it, and is a perfect fit for RIS.

Weighted reservoir sampling (WRS) processes the elements of the input

stream in order, maintaining a reservoir of the currently selected sample. At

any point in the stream, WRS possibly replaces the sample in the reservoir

with the next sample in the stream. It does so with a with probability such

that the sample in the reservoir is drawn from the desired distribution over

all elements processed thus far. When the stream ends, the reservoir is

returned
2
.

WRS comes in many flavors and can be extended to maintain multiple

samples in the reservoir. We refer to Chao [30] and Bitterli et al. [1] for

details. We give pseudo-code of RIS implemented with WRS in Algorithm 2,

the combination of which we call reservoir resampling.
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Algorithm 2: Reservoir Resampling.

1 class Reservoir

2 𝑌,𝑊𝑌 ← ∅, 0 // The output sample

3 𝑤sum ← 0 // The sum of weights

4 function update(𝑋𝑖 , 𝑤𝑖)
5 𝑤sum ← 𝑤sum + 𝑤𝑖

6 if rand() < (𝑤𝑖/𝑤sum) then
7 𝑌 ← 𝑋𝑖

8 function Resample(𝑀)
9 Reservoir 𝑟

10 for 𝑖 ← 1 to 𝑀 do
11 generate 𝑋𝑖

12 𝑤𝑖 ← 𝑚𝑖(𝑋𝑖) 𝑝̂(𝑋𝑖)𝑊𝑋𝑖

13 𝑟.update(𝑋𝑖 , 𝑤𝑖)

14 if 𝑟.𝑌 ≠ ∅ then
15 𝑟.𝑊𝑌 ← 1

𝑝̂(𝑟.𝑌) 𝑟.𝑤sum

16 return 𝑟

Tip 4.1 Do not choose which spatial

neighbors to reuse based on the ran-

dom samples stored at these neighbors,

as this causes bias!

4.2 Spatiotemporal reuse

The idea of spatiotemporal reuse is simple: Say we render an image, and use

RIS at each pixel to produce a sample. We can only invest in 𝑀 candidates

for each pixel, which limits the sample quality we can obtain. However, the

integrands (and target distributions) of pixels within a small neighborhood

are likely to be similar. Hence, for a given pixel, the samples produced by

RIS at its neighbors are great reuse candidates. This immediately inspires

spatial and temporal reuse, leading to the following reuse pattern:

Initial candidates We produce a sample, approximately distributed

proportionally to 𝑝̂ by RIS, from one or more independent samples. If the

inputs have identical distributions, we may use 𝑚𝑖 = 1/𝑀.

Spatial reuse After producing a new sample for each pixel with RIS, each

pixel identifies a set of spatial neighbors (e.g., picked randomly from a disk)

and invokes RIS again, resampling from its own sample and the sample

of each selected neighbor. This process can be repeated multiple times,

repeatedly improving the distributions, at the cost of increased correlation.

Since the distributions of the inputs vary, advanced MIS weights like the

generalized balance heuristic are required.

Temporal reuse Reuse can be extended in time as well. In an animation,

a pixel’s ideal distribution across two adjacent frames is often similar. This

allows combining samples of prior frames and the current frame using

RIS, after matching pixels with appropriate motion vectors. If temporal

reuse occurs each frame, samples feed forward through time indefinitely,

continually improving the sampling distribution. If temporal reuse is
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𝐱1

𝐱2
𝐱0

Figure 4.1: An example direct lighting

path.

3: We gray x0 and x1 to emphasize the

path is now a function of only x2.

Tip 4.2 A canonical sample fully cov-

ers the support of the target function,

while samples reused from neighbors

might not, e.g., due to differences in

visibility.

followed by spatial reuse, samples from prior frames can also spread

spatially, leading to very rapid spread of good samples. Temporal reuse

also requires advanced MIS weights; access to previous frames’ target

functions is required to remove all bias.

One natural order of these steps, per frame, is initial candidate genera-

tion followed by temporal reuse, followed by spatial reuse, followed by

integration with the selected sample as ⟨𝐼⟩ = 𝑓 (𝑋)𝑊𝑋 .

4.3 Example: ReSTIR for direct illumination

Now, let’s apply RIS and ReSTIR to direct lighting.

Direct lighting encompasses the contributions of all length-3 paths, i.e.,

light paths that originate from a light source, are reflected off a surface

or particle, and directly reach the sensor. Indexing from the sensor, direct

illumination thus consists of paths [x0 , x1 , x2], where x0 is on the image

plane, x1 is the primary hit, and x2 lies on a emissive light surface. See

Figure 4.1 for an illustration. Define the set of points on emissive surfaces

as 𝐴; then, x2 ∈ 𝐴.

Vertices x0 and x1 may be deterministic or depend on randomized lens

coordinates. Post-randomization, we treat their values as fixed, making x2

the only free variable. In this context, our paths are functions of only x2,

expressed in the tuple form:
3

𝑥̄ = [x0 , x1 ,x2] . (4.1)

The remaining challenge is to integrate x2 over the surface geometry. We

plan to improve the distribution of x2 by spatiotemporal sharing between

pixels and frames. We treat x0 and x1 as constants, possibly randomized

independently for each pixel and frame.

Assuming we have chosen x0 and x1, we still need to estimate 𝐿(x1 → x0)
to finish the pixel color estimate (Equation 1.2). We need to integrate

𝐿(x1 → x0) =
∫
𝐴

𝑓𝑠(x2 → x1 → x0)𝐺(x1 ↔ x2)𝑉(x1 ↔ x2)𝐿𝑒(x2 → x1)dx2 ,

(4.2)

where 𝑓𝑠 is the BSDF at x1, 𝐿𝑒 is the emission from x2 in the x2x1 direction,

𝐺 is the geometry term, and 𝑉 is the visibility term. Treating x0 and x1 as

constants, the integrand is a function of only x2,

𝐿(x1 → x0) =
∫
𝐴

𝑓 (x2)dx2. (4.3)

The vertices x0 and x1 vary by pixel index 𝑖, giving us a pixel-dependent

integrands 𝑓𝑖 over the same space 𝐴. This defines our ReSTIR context: We

aim to improve the distribution of our direct illumination paths by sharing

vertices x2 between pixels. To do so, we resample x2 from one or more

independent canonical samples covering the current pixel, plus samples

borrowed from other pixels and frames.
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Tip 4.3 We strongly recommend first

including visibility in your target func-

tion. Correcting an optimized method

is exponentially harder than retaining

correctness while optimizing.

[6]: Talbot et al. (2005), ‘Importance Re-

sampling for Global Illumination’

4: Section 7.1.1 discusses heuristics for in-

put pixel selection.

5: The bias from 1/𝑀 weights can be re-

moved with contribution MIS weights (see

Section 7.1.2).

In summary, our goal is to leverage resampling to cheaply generate or

borrow multiple candidate samples for x2 such that it obtains an accurate

distribution that gives low integration variance.

Next, we outline how to perform the sampling. All resampling steps require

defining the target functions, so we start with it.

Target function To define the target function, we build on the integrand

in Equation 4.2. For simplicity of notation, we replace x2 with 𝑥 and treat

x0 and x1 as implicit constants. The integrand for direct illumination (with

unspecified pixel index) is 𝑓 (𝑥) = 𝑓𝑠(𝑥)𝐺(𝑥)𝑉(𝑥)𝐿𝑒(𝑥), and we recommend

starting with the same target function, 𝑝̂ = 𝑓 :

𝑝̂(𝑥) = 𝑓𝑠(𝑥)𝐺(𝑥)𝑉(𝑥)𝐿𝑒(𝑥). (4.4)

Talbot et al. [6] drops the visibility term from the target function 𝑝̂ for

performance reasons, using 𝑝̂(𝑥) = 𝑓𝑠(𝑥)𝐺(𝑥)𝐿𝑒(𝑥). This worsens the theo-

retical limit distribution and requires guaranteeing additional conditions

to remain correct, but may lead to better efficiency in practice.

Initial candidates ReSTIR starts by generating canonical samples for each

pixel, e.g., with RIS from multiple canonical inputs. In the case of direct

lighting, we may pick some number 𝑀 samples on emitting surfaces with

a standard light sampler, and pick one with RIS, with 1/𝑀 MIS weights.

We present alternatives in Section 4.5, but again recommend first finishing

the simplest possible correct base implementation.

After initial candidate generation, we perform spatial and temporal reuse.

This is relatively straightforward. We propose starting with the generalized

balance heuristic MIS weights, using target functions 𝑝̂ 𝑗(𝑥), depending on

pixel 𝑗’s sensor and primary vertices x𝑗 ,0 and x𝑗 ,1, and 𝑥 in place of x2. The

MIS weights are then

𝑚𝑖(𝑥) =
𝑝̂𝑖(𝑥)∑𝑀
𝑗=1

𝑝̂ 𝑗(𝑥)
. (4.5)

For example, with 𝑝̂ = 𝑓 , we have

𝑚𝑖(𝑥) =
𝑓 (𝑥 → x𝑖 ,1 → x𝑖 ,0)∑𝑀

𝑗=1
𝑓 (𝑥 → x𝑗 ,1 → x𝑗 ,0)

, (4.6)

with 𝑓 = 𝑓𝑠 · 𝐺 ·𝑉 · 𝐿𝑒 .

Spatial reuse For spatial reuse, we recommend picking a suitable number

of pixels from the relative vicinity of the current pixel, e.g., a square or

a disk
4
. Looking at G-buffer values to heuristically choose similar pixels

should be fine, as long as the decisions are not based on the samples stored

in the reservoirs. Using 1/𝑀 weights generally leads to non-convergence

to 𝑝̂ distribution, and, bias
5
.
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Tip 4.4 We recommend implementing

and validating integration with only

candidate samples before implement-

ing spatial reuse, spatial reuse before

temporal reuse, and temporal reuse

first without motion. By validation we

mean that averaging a large number

of still frames converges to the path

tracing ground truth.

6: We commonly cap the sample confi-

dence to somewhere between 5–30. Start-

ing with a cap of 20 is usually good.

7: For historical reasons related to WRS,

the confidence weight in the reservoirs is

often stored with variable name 𝑀, and

confidence capping is called 𝑀-capping.

We adopt the convention of denoting con-

fidence by 𝑐 and its cap by 𝑐cap.

[4]: Lin et al. (2022), ‘Generalized Resam-

pled Importance Sampling’

Temporal reuse Effective temporal reuse requires careful tracking of

motion vectors, i.e., how pixels move between frames. For temporal reuse,

we do RIS between the current pixel and the motion-matched pixel in the

previous frame. Correctness again requires proper MIS weights, with the

potential challenge that the advanced MIS weights require evaluating last

frame’s 𝑝̂, which may require the ability to perform visibility queries in

the previous frame’s scene (and hence storing the previous frame’s ray

acceleration structure).

4.4 History length

The above method describes a basic version of ReSTIR for direct illumination.

However, it has certain, critical, inefficiencies. For example, the temporal

reuse assigns equal weights to the previous frame’s sample and the new

sample. This is not ideal, since it loses roughly 50% of the accumulated

history each frame. This can be fixed by weighted MIS, introducing so-called

confidence weights.

Confidence weights We give samples confidence weights, denoted here

𝑐 𝑗 , and stored in the pixels’ reservoirs. We use the 𝑐 𝑗 for weighting the

samples in resampling,

𝑚𝑖(𝑥) =
𝑐𝑖 𝑝̂𝑖(𝑥)∑𝑀
𝑗=1

𝑐 𝑗 𝑝̂ 𝑗(𝑥)
. (4.7)

The more we trust a random variable, the higher its confidence 𝑐𝑖 should

be. If one of the inputs corresponds to 7 independent samples of a kind,

while another corresponds to 2 similar samples, the confidences should

be 7 and 2, making MIS favor the more trustworthy sample. The notion

of corresponding to 𝑁 samples is often known as effective sample count. But,

in RIS, we mix samples from different distributions, and effective sample

counts are hard to track. We approximate them by simply tracking the

number of total input samples the sample has aggregated over its history,

summing the confidence weights 𝑐 𝑗 of all the inputs as the confidence of

the result.

When aggregating samples of confidences 𝑐1 and 𝑐2 with RIS, we set the

confidence to 𝑐1 + 𝑐2. This is, in reality, an upper bound of the effective

sample count, but a more accurate estimate is hard to get, hence we

use the sum as the confidence. Over multiple frames, these confidences

would grow exponentially, each spatial reuse multiplying the confidences.

However, only a limited number of new samples are truly added to the

pool each frame. Summing confidences is a drastic overestimate and means

giving new samples exponentially decreasing relative weights, leading

to convergence to a wrong result if not tackled. In practice, the sample

confidence is capped6
to a constant that defines the balance between noise

and correlation in the final image
7
. Capping the confidence weights is vital

to combat the correlations in ReSTIR [4].
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Algorithm 3: Resampling with Confidence Weights.

1 class Reservoir

2 𝑌,𝑊𝑌 ← ∅, 0 // The output sample

3 𝑤sum ← 0 // The sum of weights

4 𝑐 ← 0 // Confidence weight of output

5 function update(𝑋𝑖 , 𝑤𝑖 , 𝑐𝑖)
6 𝑤sum ← 𝑤sum + 𝑤𝑖

7 𝑐 ← 𝑐 + 𝑐𝑖 // Update the confidence.

8 if rand() < (𝑤𝑖/𝑤sum) then
9 𝑌 ← 𝑋𝑖

10 function Resample(𝑀)
11 Reservoir 𝑟
12 for 𝑖 ← 1 to 𝑀 do
13 generate 𝑋𝑖

14 𝑤𝑖 ← 𝑚𝑖(𝑋𝑖) 𝑝̂(𝑋𝑖)𝑊𝑋𝑖

15 𝑟.update(𝑋𝑖 , 𝑤𝑖 , 𝑐𝑖)

16 if 𝑟.𝑌 ≠ ∅ then
17 𝑟.𝑊𝑌 ← 1

𝑝̂(𝑟.𝑌) 𝑟.𝑤sum

18 𝑟.𝑐 ← min(𝑟.𝑐, 𝑐cap)
19 return 𝑟

[1]: Bitterli et al. (2020), ‘Spatiotemporal

Reservoir Resampling for Real-Time Ray

Tracing with Dynamic Direct Lighting’

Tip 4.5 ReSTIR consists of multiple

parts that all must work. Resist the

temptation to optimize, and start by

building a principled, simple base sys-

tem. Once ready and fully validated,

improve it piece by piece, thoroughly

validating each step.

[5]: Wyman et al. (2021), ‘Rearchitecting

Spatiotemporal Resampling for Produc-

tion’

A new independent sample is given confidence 1, and RIS-selecting one

from 𝑀 new samples yields confidence 𝑀. Pixels entering the screen as the

camera moves (no temporal precedessor) get their 𝑀 reset to 0, and it often

makes sense to reset 𝑀 also when detecting occlusions or disocclusions.

Resetting confidence is allowed only if it can be done based on examining

(changes to) the G-buffer; resets depending on sample details leads to

bias.

4.5 Advanced topics

Earlier, we proposed using a standard light sampler for direct illumination

ReSTIR, with emphasis on easier implementation. A standard light sampler

might not be the ideal way of generating samples with ReSTIR, and glossy

materials would benefit from BSDF sampling. There is also a conceptual

problem in temporal reuse that we will use as a segue to the next chapter.

Improved light sampling Candidate samples can be cheaply generated

with, e.g., power-based importance sampling [1]. A light source can be

stochastically selected based on its power (total emitted flux over the

surface) and a sample point can be picked uniformly from its surface area.

Bitterli et al. [1] generate 32 candidate light samples and pick one using

WRS, observing real-time performance. The performance can be further

improved by precomputing the light samples into “light tiles” shared by

screen pixel blocks [5] (to be introduced in Chapter 7).
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[7]: Bitterli (2022), ‘Correlations and Reuse

for Fast and Accurate Physically Based

Light Transport’

Tip 4.6 We recommend first finalizing

and validating the base implementa-

tion without BSDF sampling. Debug-

ging multiple parts simultaneously can

be hard.

8: Imagine moving a path to the next

frame by gluing its vertices to moving

objects, matching the triangle index and

UV coordinates in both frames. This is

an example of a shift mapping between

frames.

Although each candidate sample is suboptimal, having many of them

quickly reduces the variance of the selected sample. Note that power-based

light sampling does not consider the properties of the shading point, and

the sampling quality can be poor for glossy surfaces. For glossy surfaces,

using BSDF sampling as a different strategy turns out to greatly improve

the sampling quality [7].

Mixing BSDF and light sampling Section 3.3 explains how to do MIS

between BSDF and light sampling for the initial candidates, taking 𝑀1

samples with a BSDF importance sampler and 𝑀2 samples with a light

sampler. This may also be used with ReSTIR—remember to transform the

PDFs into area measure before applying RIS. Proper treatment of glossy

materials, however, requires shift mappings from the next chapter.

RIS and domains ReSTIR, as we presented it, reuses samples within the

same domain. What if objects move, and the domain changes between

frames? This is not handled by RIS without extensions! Samples need

to be modified to enable reuse between frames
8
. This also requires shift

mappings, and an extension of RIS to reuse between domains.



[38]: Lehtinen et al. (2013), ‘Gradient-

Domain Metropolis Light Transport’

Tip 5.1 Implement the reconnection

shift first. Always first validate that

shifting to the same pixel retains the

path and its radiance, and that the Ja-

cobian determinant is then 1:

𝑇𝑖→𝑖(𝑥) = 𝑥,

𝑓 (𝑇𝑖→𝑖(𝑥)) = 𝑓 (𝑥),
|𝑇′𝑖→𝑖(𝑥)| = 1.

Report also small discrepancies: path

tracers often have bugs only discovered

when implementing shift mappings.

[39]: Kettunen et al. (2015), ‘Gradient-

Domain Path Tracing’

[4]: Lin et al. (2022), ‘Generalized Resam-

pled Importance Sampling’

[40]: Hua et al. (2019), ‘A Survey on

Gradient-Domain Rendering’

Definition 5.1.1 (shift mapping) A shift

mapping 𝑇 from 𝐴 to 𝐵 is a bĳective
function from a subset D(𝑇) ⊂ 𝐴 to its
image I(𝑇) ⊂ 𝐵.

Note that a shift mapping from 𝐴 to 𝐵 is
not always a function from 𝐴 to 𝐵, but
from a subset of 𝐴, its domain D(𝑇), to a
subset of 𝐵, its image I(𝑇).

Reusing Between Domains 5
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5.1.1 Shift mappings . . . . . . . 22
5.1.2 Jacobian determinants . . . 23
5.2 Reusing samples between

domains . . . . . . . . . . . . 23
5.3 MIS between domains . . . 24

More advanced sample reuse often requires that samples are modified at

reuse. The scene changes between frames, and different pixels see different

path spaces. Simply reusing vertices without modification does not allow

reuse through mirrors or glass. The law of ideal reflection must be obeyed,

and paths need to be modified to allow effective reuse.

We now generalize RIS to reuse between domains with shift mappings.

5.1 Preliminaries

In light transport, shift mappings allow reusing paths between domains,

such as path spaces seen by different pixels.

5.1.1 Shift mappings

The term shift mapping originates from gradient-domain rendering [38],

where samples are moved from one pixel to another—shifted on the image

plane—for evaluating discrete image gradients (Δ𝐼/Δ𝑥,Δ𝐼/Δ𝑦); the image

is then reconstructed from the combination of color and (discrete) gradient

estimates. The path consists of multiple vertices, some of which need to be

modified for the path to remain interesting for the other pixel.

Such shift mappings allow reusing paths for other pixels with minimal

modifications, taking into account the constraints set by materials such as

shiny metals or glass.

A shift mapping 𝑇 from 𝐴 to 𝐵 (e.g., path spaces of different pixels) maps

paths in 𝐴 to paths in 𝐵 by a relation 𝑦 = 𝑇(𝑥). An example shift mapping

is the reconnection shift [38] that maps a path to another pixel, reconnecting

the deterministic beginning to the same secondary vertex x2, retaining all

free vertices:

𝑇𝑖→𝑗([x𝑖 ,0 , x𝑖 ,1 , x2 , x3 . . .]) = [x𝑗 ,0 , x𝑗 ,1 , x2 , x3 , . . .], (5.1)

using the notation of Section 4.3. This shift mapping works well for diffuse

and rough surfaces, but not for glossy or specular surfaces, as it does not

respect the law of ideal reflection, unlike, for example the half-vector shift
[39], the random replay shift, and their hybrids [4, 40].

Lin et al. [4] formally define shift mappings. The definition encodes the

following, partially overlapping properties for a shift mapping 𝑇 between

two domains:

▶ The shift mapping is deterministic.

▶ A path may shift to at most one path in the target domain.

▶ Two paths may not shift to the same path; an inverse shift must exist.
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1: In multivariate calculus the derivative

is called the Jacobian matrix, and the scal-

ing factor is its determinant. Our Jacobian

determinants have simple geometric for-

mulas.

2: If 𝑌 = 𝑇(𝑋), then

𝑝𝑌(𝑌) =
𝑝𝑋 (𝑋)
|𝑇′(𝑋)| . (5.2)

Similarly, comparing 𝑊𝑌 to 1/𝑝𝑌(𝑌),

𝑊𝑌 = 𝑊𝑋 |𝑇′(𝑋)|. (5.3)

[4]: Lin et al. (2022), ‘Generalized Resam-

pled Importance Sampling’

[40]: Hua et al. (2019), ‘A Survey on

Gradient-Domain Rendering’

The domains may or may not be the same,

and the samples may or may not be to be

statistically independent.

𝑊𝑋𝑖
: unbiased contribution weight

of 𝑋𝑖 in its own domain.

|𝑇′(𝑋𝑖)| Jacobian determinant of

the shift mapping from Ω𝑖 to Ω.

Pr [choose 𝑖] = 𝑤𝑖∑𝑀
𝑗=1

𝑤 𝑗
.

Treat 𝑊𝑌 as 1/𝑝(𝑌) but note it is

an unbiased estimate, not a function of 𝑌.

▶ The inverse shift must shift back to the original.

▶ Not all paths need to be shiftable.

In practical implementations, invertibility is often guaranteed by symmetric

shift mappings, making sure that if 𝑦 = 𝑇𝑖→𝑗(𝑥), then 𝑥 = 𝑇𝑗→𝑖(𝑦). Invert-

ibility is also required for undefined shifts: if 𝑥 cannot be shifted with 𝑇𝑖→𝑗 ,

then no path 𝑦 in the target domain is allowed to shift to 𝑥.

In practical implementations, the code implementing the shift 𝑇𝑖→𝑗(𝑥)
may, during the shifting process, find a show-stopper condition, such

as an occlusion in the reconnection shift, forcing 𝑇𝑖→𝑗 to halt and return

undefined.

5.1.2 Jacobian determinants

Imagine mapping close-by real numbers 𝑥1 and 𝑥2 by the same function.

The distance between 𝑥1 and 𝑥2 usually grows or shrinks: mapping changes

the density of numbers. The local scaling factor is given by the derivative
1
.

As shift mappings map paths between domains as 𝑦 = 𝑇(𝑥), they also

modify the paths’ densities; Jacobian determinants |𝑇′(𝑥)| capture the

local scaling factor, which also changes probability densities when passing

random variables
2

through mappings. Unbiased contribution weights

also change in shift mappings. The Jacobian determinants (often just

“Jacobians”) are numbers, usually given by relatively simple formulas, that

must be included here and there, for example the resampling weights 𝑤𝑖

and MIS weights 𝑚𝑖 , to retain correctness and help protect from outliers.

The rendering literature knows many good shift mappings along with

formulas for their Jacobian determinants [4, 40], precise implementation

details, and sample code. We discuss specific shift mappings useful for

path reuse in more detail starting in Section 6.4.

5.2 Reusing samples between domains

We replay our previous exposition of RIS, this time with shift mappings

included:

1. Take inputs (𝑋1 , . . . , 𝑋𝑀), each from its own domain Ω𝑖 .

2. Map the samples into the target domain Ω as 𝑌𝑖 = 𝑇𝑖(𝑋𝑖).

3. Evaluate resampling MIS weights 𝑚𝑖(𝑌𝑖) for all 𝑌𝑖 .

4. Evaluate resampling weights 𝑤𝑖 = 𝑚𝑖(𝑌𝑖) 𝑝̂(𝑌𝑖)𝑊𝑋𝑖
|𝑇′

𝑖
(𝑋𝑖)| for all 𝑖.

5. Choose 𝑌 randomly from the 𝑌𝑖 proportionally to 𝑤𝑖 .

6. Evaluate the unbiased contribution weight 𝑊𝑌 = 1

𝑝̂(𝑌)
∑𝑀

𝑗=1
𝑤 𝑗 .

This process gives us a sample 𝑌 in the target domain Ω that we can use

for integration or chaining RIS. Its PDF is approximately proportional to

the target function 𝑝̂; increasingly so with more input samples.
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Algorithm 4: RIS Between Domains

1 function Resample(𝑀)
2 Reservoir 𝑟
3 for 𝑖 ← 1 to 𝑀 do
4 generate 𝑋𝑖 // E.g., take from reservoirs

5 𝑌𝑖 ← 𝑇𝑖(𝑋𝑖) // Shift into Ω

6 𝑤𝑖 ← 𝑚𝑖(𝑌𝑖) 𝑝̂(𝑌𝑖)𝑊𝑋𝑖
|𝑇𝑖′(𝑋𝑖)| if 𝑌𝑖 ≠ ∅ else 0 // 0 if shift

failed

7 𝑟.update(𝑌𝑖 , 𝑤𝑖 , 𝑐𝑖)

8 if 𝑟.𝑌 ≠ ∅ then
9 𝑟.𝑊𝑌 ← 1

𝑝̂(𝑟.𝑌) 𝑟.𝑤sum

10 𝑟.𝑐 ← min(𝑟.𝑐, 𝑐cap)
11 return 𝑟

3: Generalized balance heuristic in a

single-domain case:

𝑚𝑖(𝑥) =
𝑝̂𝑖(𝑥)∑𝑀
𝑗=1

𝑝̂ 𝑗(𝑥)
. (5.6)

4: PDF transformation rule (Equa-

tion 5.2):

𝑝𝑌(𝑌) =
𝑝𝑋 (𝑋)
|𝑇′(𝑋)| if 𝑌 = 𝑇(𝑋).

While the resampling weight formula (step 3) looks different with the

addition of the Jacobian determinant, it is essentially the same formula

as before, if we use the unbiased contribution weight transformation rule

(Equation 5.3) to substitute

𝑊𝑋𝑖
|𝑇′𝑖 (𝑋𝑖)| = 𝑊𝑌𝑖 , (5.4)

recovering

𝑤𝑖 = 𝑚𝑖(𝑌𝑖) 𝑝̂(𝑌𝑖)𝑊𝑌𝑖 . (5.5)

In order to chain RIS or integrate, the inputs, shifted to Ω, should together

cover the support of 𝑝̂. We often guarantee this by letting one of the reuse

candidates be a canonical sample with an importance sampler directly

targeting 𝑝̂ and using an identity shift 𝑇𝑖(𝑥) = 𝑥 with Jacobian determinant

|𝑇′
𝑖
(𝑥)| = 1.

5.3 MIS between domains

The generalized balance heuristic
3

uses the inputs’ target functions 𝑝̂𝑖 as

proxies for the intractable PDFs. Now, the samples 𝑋𝑖 come from domains

Ω𝑖 , and their target functions 𝑝̂𝑖 cannot be evaluated at the shifted 𝑌𝑖 ∈ Ω,

where the MIS weights 𝑚𝑖(𝑌𝑖) are evaluated. In other words, the MIS

weights require 𝑝̂𝑖 evaluations at the input pixels.

Let us, for a second, pretend that we have access to the source PDFs 𝑝𝑖 in the

input domains. Ideally, we would use the traditional balance heuristic,

𝑚𝑖(𝑦) =
𝑝𝑌𝑖 (𝑦)∑𝑀
𝑗=1

𝑝𝑌𝑗
(𝑦)

, (5.7)

where 𝑦 ∈ Ω is in the current domain, and the PDFs 𝑝𝑌𝑖 are for the mapped
random variables 𝑌𝑖 = 𝑇𝑖(𝑋𝑖). How can we possibly achieve this?

The PDF transformation rule
4

says 𝑝𝑌𝑖 (𝑦) = 𝑝𝑋𝑖
(𝑥𝑖)/|𝑇′(𝑥𝑖)|, where 𝑦 =

𝑇𝑖(𝑥𝑖). This is a good start. What’s 𝑥𝑖? We find 𝑥𝑖 by shifting 𝑦 back into Ω𝑖 ,
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[4]: Lin et al. (2022), ‘Generalized Resam-

pled Importance Sampling’

Definition 5.3.1 (Canonical sample)

An input 𝑋𝑖 ∈ Ω𝑖 to RIS is called canon-

ical if Ω𝑖 = Ω, it uses the identity shift
map 𝑇𝑖(𝑥) = 𝑥, uses 𝑝̂𝑖 = 𝑝̂, and covers 𝑝̂
(i.e., supp 𝑝̂ ⊂ supp𝑋𝑖 ).

Need MIS weights 
to normalize

Uneven 
partial overlaps

Figure 5.1: Candidate samples from mul-

tiple domains can contribute to the same

integration at a target domain via shift

mapping. But the contribution has to be

normalized by MIS weights. Each point in

the target domain must be covered exactly

once in total.

Tip 5.2 Slow down to speed up! We rec-

ommend first implementing a correct,

principled and slow version of ReSTIR.

Not because bias is always bad, but

because this saves a lot of time.

𝑥𝑖 = 𝑇−1

𝑖
(𝑦). How about the division by |𝑇′

𝑖
(𝑥𝑖)|? Easy: we already evaluate

𝑥𝑖 = 𝑇−1

𝑖
(𝑦), so we multiply by its Jacobian determinant, |𝑇−1

𝑖

′(𝑦)|. This

achieves the division by |𝑇′(𝑥𝑖)|, by the inverse function theorem.

Our equation appears more daunting than it truly is:

𝑝𝑌𝑖 (𝑦) = 𝑝𝑋𝑖

(
𝑇−1

𝑖 (𝑦)
) ���𝑇−1

𝑖

′(𝑦)
��� . (5.8)

Simply shift 𝑦 back into Ω𝑖 and multiply by the simple formula given for

the shift’s Jacobian determinant. With the understanding that 𝑝𝑌𝑖 (𝑦) = 0 if

𝑦 cannot be shifted into Ω𝑖 , this allows using the balance heuristic between

domains (Equation 5.7)—when the PDFs are known.

We assume the PDFs are not known, and use 𝑝̂𝑖 as a proxy for 𝑝𝑋𝑖
. As such,

we define “𝑝̂ from 𝑖” [4]. We simply replace 𝑝𝑋𝑖
by 𝑝̂𝑖 , and encode the same

zero-condition as:

𝑝̂←𝑖(𝑦) =
{

𝑝̂𝑖
(
𝑇−1

𝑖
(𝑦)

) ��𝑇−1

𝑖

′(𝑦)
�� , if 𝑦 ∈ 𝑇𝑖(supp𝑋𝑖)

0 otherwise

. (5.9)

The condition 𝑦 ∈ 𝑇𝑖(supp𝑋𝑖) simply means that we return 0 if 𝑦 cannot be

shifted into Ω𝑖 , or if 𝑥𝑖 = 𝑇−1

𝑖
(𝑦) has zero PDF. When the candidates come

from RIS, we can simplify this test into “if cannot shift, return 0”, since

we recursive guarantee 𝑝̂𝑖 = 0 exactly when 𝑝𝑋𝑖
= 0, by giving a canonical

sample to RIS if supp(𝑝̂) is not otherwise be covered.

The generalized balance heuristic between multiple domains is then

𝑚𝑖(𝑦) =
𝑝̂←𝑖(𝑦)∑𝑀
𝑗=1

𝑝̂←𝑗(𝑦)
, (5.10)

and we can also include the confidence weights 𝑐 𝑗 used by ReSTIR in

Section 4.4.

𝑚𝑖(𝑦) =
𝑐𝑖 𝑝̂←𝑖(𝑦)∑𝑀
𝑗=1

𝑐 𝑗 𝑝̂←𝑗(𝑦)
. (5.11)

Note how Equation 5.10 and 5.11 satisfy the MIS weight requirement

𝑀∑
𝑖=1

𝑦∈𝑇𝑖 (supp𝑋𝑖 )

𝑚𝑖(𝑦) = 1. (5.12)

with the definition in Equation 5.9. Figure 5.1 shows an illustration.

The generalized balance heuristic is good for a small numbers of candidates,

but becomes slow for large numbers due to the total of 𝑂(𝑀2) 𝑝̂←𝑗 terms.

We explore more lightweight alternatives in Section 7.1.1 and Section 7.1.2,

but we recommend starting using this simple balance heuristic. Correctness

first, performance after.
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Algorithm 5: Generalized Balance Heuristic

Input : 𝑦 ∈ Ω where 𝑚𝑖(𝑦) is evaluated.

Input :Original 𝑥 ∈ Ω𝑖 that yielded 𝑦. We assume 𝑦 = 𝑇𝑖(𝑥).
Input : Jacobian determinant

��𝑇′
𝑖
(𝑥)

��
of the shift 𝑦 = 𝑇𝑖(𝑥).

Output :Generalized balance heuristic weight 𝑚𝑖(𝑦).
1 function pHatFrom(j, y) // 𝑝̂←𝑗(𝑦) for generic 𝑦 ∈ Ω.

2 𝑥 𝑗 , 𝐽𝑥 𝑗 ← 𝑇−1

𝑗
(𝑦), |𝑇−1

𝑗

′(𝑦)| // Shift 𝑦 into Ω𝑗 and eval Jacobian.

3 if 𝑥 𝑗 ≠ ∅ then // If shift succeeded

4 return 𝑝̂ 𝑗(𝑥 𝑗) · 𝐽𝑥 𝑗 // 𝑝̂ 𝑗(𝑇−1

𝑗
(𝑦)) |𝑇−1

𝑗

′(𝑦)|

5 return 0

6 function pHatFrom_opt(𝑗 , 𝑥, |𝑇′
𝑗
(𝑥)|) // 𝑝̂←𝑗(𝑦) optimized for 𝑦 = 𝑇𝑗(𝑥)

7 return 𝑝̂ 𝑗(𝑥)/|𝑇′𝑗 (𝑥)| // 𝑝̂ 𝑗(𝑇−1

𝑗
(𝑦)) |𝑇−1

𝑗

′(𝑦)|.

8 function GenBalanceHeuristic(𝑖 , 𝑦; 𝑥,
��𝑇′
𝑖
(𝑥)

��) // 𝑚𝑖(𝑦), optimized (𝑦 = 𝑇𝑖(𝑥))
9 𝑚num ← 𝑐𝑖 · pHatFrom_opt(𝑖 , 𝑥,

��𝑇′
𝑖
(𝑥)

��) // Numerator: 𝑐𝑖 𝑝̂←𝑖(𝑦)
10 𝑚

den
← 𝑚num // Case 𝑗 = 𝑖. Denominator:

∑𝑀
𝑗=1

𝑐 𝑗 𝑝̂←𝑗(𝑦)
11 for 𝑗 ← 1 to 𝑀; 𝑗 ≠ 𝑖 do // Cases 𝑗 ≠ 𝑖

12 𝑚
den
← 𝑚

den
+ 𝑐 𝑗 · pHatFrom(𝑗 , 𝑦)

13 return 𝑚num/𝑚den

Note:
Return 0 if 𝑦 is a null sample; this avoids 0/0. See Tip 3.13.
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In this chapter, we show how to apply generalized RIS to the path sampling

problem for general global illumination, based on the implementation

of ReSTIR Path Tracing (ReSTIR PT) [4]. We will first formalize the path

sampling problem, followed by applying RIS to a path tree. We then explore

shift mapping design and introduce the efficient shift mapping for real-time

rendering developed in ReSTIR PT. Finally, we briefly introduce Volumetric

ReSTIR [3] which adds support for participating media.

6.1 The path integral

A light path can have an arbitrary number of bounces. To extend our path

integral to account for global illumination, we need to sample in the union

of product spaces ∪∞
𝐷=2

A𝐷−1
, where A is the set of all scene surfaces. The

full path space integral extends Equation 4.2:

𝐿(x1 → x0) =
∞∑

𝐷=2

∫
A𝐷−1

(𝐷−1∏
𝑗=1

𝑓𝑠(x𝑗+1 → x𝑗 → x𝑗−1)𝐺(x𝑗 ↔ x𝑗+1)

𝑉(x𝑗 ↔ x𝑗+1)
)
𝐿𝑒(x𝐷 → x𝐷−1) dx2 . . . dx𝐷 .

(6.1)

A path sample of 𝐷 − 1 bounces can be written in the following tuple form

in area measure:

[x0 , x1 ,x2 , x3 , . . . , x𝐷] (6.2)

6.2 RIS with a path tracer

With next-event estimation (NEE) at every path vertex, a path tracer usually

creates a path tree. We want to use RIS to pick one path from the entire

path tree, which we can then input into the ReSTIR pipeline.

Assume all light vertices are sampled by NEE, and label paths (from the

same path tree) from 1 to 𝑘 bounces as 𝑥1 , 𝑥2 , . . . 𝑥𝑘 , we can still apply the

RIS resampling weight formula: 𝑤𝑖 = 𝑚𝑖(𝑥𝑖)𝑝̂(𝑥𝑖)𝑊𝑥𝑖 . Note that 𝑚𝑖(𝑥𝑖) = 1

here, since each path sample is responsible for a different path subspace

and different path subspaces are disjoint (a sampling technique for one

subspace will have zero PDF for any sample outside the subspace). It is

common to set 𝑝̂(𝑥𝑖) = 𝑓 (𝑥𝑖), the path contribution [2, 4]. And it is easy to

know that 𝑊𝑥𝑖 = 1/𝑝(𝑥𝑖), the reciprocal of path PDF. Both 𝑓 (𝑥𝑖) and 𝑝(𝑥𝑖)
are easily obtained from a path tracer.
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1: Alternatively, the path integral can

be partitioned into two integrals for the

two light sampling techniques with the

light sampling MIS weights being part of

path contribution 𝑓 (𝑥𝑖) for each technique,

which preserves 𝑚𝑖(𝑥𝑖) = 1 in RIS.

[2]: Ouyang et al. (2021), ‘ReSTIR GI: Path

Resampling for Real-Time Path Tracing’

𝑝̄(𝑥) = 𝑝̂(𝑥)/
∫
Ω
𝑝̂(𝑥)d𝑥

[41]: Tokuyoshi (2023), ‘Efficient Spatial

Resampling Using the PDF Similarity’

2: Lin et al. [4] proposes a stronger (but

not necessary) condition: 𝑝̂ 𝑗(𝑇(𝑥)) ≈ 𝑝̂𝑖(𝑥)
and

��� 𝜕𝑇𝜕𝑥 ��� ≈ 1.

It is common for a path tracer to MIS NEE light sample with light samples

found by next hits of scattered rays (BSDF sampling). To account for this

in RIS, both NEE and BSDF light samples are used as candidate paths,

doubling the candidate samples. Each 𝑚𝑖(𝑥𝑖) now accounts for the other

light sampling technique of the same length and is generally less than 1
1
.

6.3 Reuse path samples

The simplest way to reuse samples is to use identity shift (in area measure):

𝑇([x0 , x1 ,x2 , . . . , x𝐷]) = [y0
, y

1
,x2 , . . . , x𝐷] . (6.3)

This resembles the direct lighting case (Section 4.3), but the whole sequence

of vertices [x2 , . . . , x𝐷] is reused.This shift mapping is used by ReSTIR GI

[2]. A proper implementation requires connecting from y
1

to x2, which

involves the re-evaluation of two BSDFs, a geometry factor, and shooting a

shadow ray. A biased implementation may prioritize computational speed

or minimal memory usage at the expense of render accuracy.

For example, ReSTIR GI precomputes the outgoing radiance along x2x1

when the sample is produced by a path tracer, and assume it is unchanged

along the reconnected direction x2y
1
, during reuse. Obviously, this is only

true for a very limited set of materials like Lambertian diffuse material.

Biased implementation like ReSTIR GI cannot generate faithful results if x2

is specular. With an unbiased implementation, the average of independent

renders will converge to the ground truth. But reusing paths with specular

vertices can increase the variance instead of reducing it.

6.4 What is a good shift mapping?

What’s an ideal shift mapping? Assuming all pixels have precedent samplers

(prior to reuse) with comparable quality, when shifting from pixel 𝑖 to pixel

𝑗, we want the shift mapping to create shifted samples 𝑦 = 𝑇(𝑥) such that

its distribution is as good as a sample produced by pixel 𝑗’s sampler. If

we assume that each pixel has a low variance importance sampler for the

target function , i.e. 𝑝𝑋 ≈ 𝑝̄, an ideal shift mapping should make the target

PDF of the shifted sample approximately equal to the original target PDF

(with density transformation) [41], i.e.
2

𝑝̄ 𝑗(𝑇(𝑥))
����𝜕𝑇𝜕𝑥 ���� ≈ 𝑝̄𝑖(𝑥) . (6.4)

With the identity shift in area measure (simply reusing all free path vertices),

this is likely to be true when reusing a distant x2 on a diffuse surface from

a neighboring pixel.

But 𝑝̄ 𝑗(𝑇(𝑥)) and 𝑝̄𝑖(𝑥) can be extremely different for 𝑥 with x1/y1
and/or

x2 on specular surfaces. A path sample with significant contribution on
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the source pixel may end up having zero or near-zero path contribution

when shifted to another pixel due to the delta or low roughness specular

material (see Figure 6.1 for an illustration). Even with diffuse material,

the situation that reconnection segment x2y
1

having a drastically different

length than x2x1 also breaks Equation 6.4 by huge or tiny ratios of the

geometry terms. A good shift mapping should avoid these two scenarios,

which means all vertices should not be simply reused. Still, we want to reuse

as many vertices as possible for the reason that shifted path segments that

are coincident with the corresponding original segments yields identity

Jacobians and equal terms in 𝑝̂.

G

D
𝐱1 𝐲1

𝐱2

𝐱3

𝐱4

Figure 6.1: An example case where recon-

nection shift fails. Note that the shifted

path (blue) connects to a glossy surface

which gives near-zero BSDF value in the

new direction.

6.5 Common shift mappings

Shift mappings have been studied extensively in gradient domain rendering

[38–40, 42]. Assuming smooth local variation of image intensity, for nearby

pixels 𝑖 and 𝑗, 𝑝̂𝑖 and 𝑝̂ 𝑗 should have similar normalization factors. With

this assumption and 𝑝̂ ≈ 𝑓 , Equation 6.4 can be equivalently tested using

𝑓𝑗(𝑇(𝑥))
����𝜕𝑇𝜕𝑥 ���� ≈ 𝑓𝑖(𝑥) , (6.5)

which is the same condition used by gradient domain rendering [39]. This

means that shift mappings developed for gradient domain rendering can

also be used for path resampling.

For an example, we examine the shift mapping introduced in gradient

domain path tracing [39]. To shift a path, gradient domain path tracing

sequentially constructs the offset path vertex by vertex by copying the

tangent-space half-vector at the corresponding base path vertex to trace

next offset path vertex using the conforming reflection or refraction direc-

tion. This is repeatedly performed until two consecutive diffuse vertices

(classified using a threshold on material roughness) x𝑘−1 , x𝑘 on the base

path are encountered, where the offset path vertex y𝑘−1
connects to the

base path vertex x𝑘 . Due to the invertibility requirement of shift mappings,

y𝑘−1
also needs to be diffuse for the shift to be successful.

Half-vector shift tends to preserve the path throughput through (near-)spec-

ular vertices, as the importance-sampled specular reflection directions are

centered around the perfect mirror reflection direction. An in-depth anal-

ysis is provided by Kaplanyan et al. [43] to show that the half-vector

parameterization yields a mostly smooth path throughput function for

glossy materials. However, as the bounce count increases, the shifted ver-

tices tend to diverge from the original path, enlarging the difference of

path throughputs. Therefore, it is still desirable to connect back to the base

path when the material types are proper.

Noticeably, the shift mapping of Kettunen et al. [39] is comprised of two

local shift decisions: half-vector copy and vertex reconnection local shift

mapping. Lin et al. [4] provide an overview of common local shift decisions.

In comparison, global methods like manifold exploration [44] allows more
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3: Since manifold exploration can solve

the specular chain between two diffuse

vertices, the two diffuse vertices in the

shifted path need not to be consecutive,

making it share more vertices with the

base path.

[4]: Lin et al. (2022), ‘Generalized Resam-

pled Importance Sampling’

[39]: Kettunen et al. (2015), ‘Gradient-

Domain Path Tracing’

[40]: Hua et al. (2019), ‘A Survey on

Gradient-Domain Rendering’

[42]: Manzi et al. (2014), ‘Improved Sam-

pling for Gradient-Domain Metropolis

Light Transport’

𝐱1 𝐲1 𝐱3

𝐱4

𝐲3

𝐱5

D

D

G
𝐱2 𝐲2

Figure 6.2: A hybrid shift mapping. The

base path selects x4 for reconnection, since

both x3 and x4 are rough (𝑘 = 4). The off-

set path copies the random numbers of the

base at x1 and x2 to construct similar scat-

ter directions for y
1

and y
2

and reconnects

y
3

to x4. This is the earliest reconnection

giving two consecutive rough/diffuse ver-

tices. Without connectability conditions

the offset path would connect y
1

to x2 (a

glossy vertex), potentially giving a path of

near-zero contribution as y
1
↔x2↔x3 is

far from an ideal reflection. Figure taken

from ‘Generalized Resampled Importance

Sampling’ [4].

tightly preserving the path contribution. But global operations like solving

the specular chain between two diffuse vertices are more computationally

intensive
3
.

6.6 An efficient shift mapping for real-time
rendering

To better combine with ReSTIR’s real-time rendering goal, ReSTIR PT [4]

presents an efficient shift mapping suitable for the GPU. The shift mapping

postpones the reconnection similar to Gradient Domain Path Tracing [39],

but features three differences.

▶ It precomputes the reconnection vertex on the base path and uses

random replay [40] to shift earlier path segments so that the base

path does not have to be stored. Random replay copies the base path’s

random numbers at each bounce to re-trace the next bounce with the

method used by the base path. It usually makes decisions similar to

copying the half-vector or direction (depending on the BSDF type),

or a light source’s position in the case of next-event-estimation.

▶ It uses an additional distance condition similar to Manzi et al. [42] to

avoid creating short reconnection segments.

▶ It classifies a vertex using only roughness of the sampled lobe,

optimizing resampling on multi-layer materials.

This is called hybrid shift in ReSTIR PT. Note that this shift mapping can

be integrated nicely with a modern path tracer and only requires constant

storage per pixel – only a reconnection vertex and a random-number-

generating seed in addition to other reservoir data like the unbiased

contribution weight. Compared to reconnection shift discussed in Section

6.4, hybrid shift can significantly improve the quality of glossy and refractive

material.

To ensure a successful implementation of hybrid shift in ReSTIR PT, it is

crucial to focus on the following key details:

Ensuring Invertibility For a x𝑘 on the base path to be connectible, it

needs to satisfy two conditions:

▶ Distance Condition:

min(| |x𝑘 − x𝑘−1 | |, | |x𝑘 − y𝑘−1
| |) ≥ 𝑑min (6.6)

▶ Roughness Condition:

min(𝛼x𝑘−1
(ℓ𝑘−1), 𝛼y𝑘−1

(ℓ ′𝑘−1
), 𝛼x𝑘 (ℓ𝑘)) ≥ 𝛼min (6.7)

Note that ℓ𝑘−1 , ℓ𝑘 , ℓ
′
𝑘−1

are sampled lobes (e.g. Lambertian diffuse, Mi-

crofacet glossy with GGX distribution) on x𝑘−1 , x𝑘 , y𝑘−1
, respectively.

𝛼x(ℓ )measures the roughness of the lobe ℓ (usually in a [0, 1] range

for specular material and it can be set to a large value for diffuse
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4: We will introduce the concept of ex-

tended path sample used in ReSTIR PT

shortly.

5: ℓ𝑘−1
is copied to the offset path such

that ℓ ′
𝑘−1

= ℓ𝑘−1

6: 𝑁
lobe

is the total number of lobes in the

scene.

7: The actual implementation may need

to skip random numbers used towards

other parts of the path tree than the path

being reused.

material) at vertex x. Some vertices in the sampled path may contain

more than one lobe
4

(like vertices that samples lights for NEE and

evaluates all lobes). In that case, ReSTIR PT picks the lobe ℓ that

maximizes 𝛼(ℓ ).

When the base path is initially traced by a path tracer, the vertex x𝑘 with

the smallest 𝑘 (𝑘 ≥ 2) that satisfies

| |x𝑘 − x𝑘−1 | | ≥ 𝑑min (6.8)

and

min(𝛼x𝑘−1
(ℓ𝑘−1), 𝛼x𝑘 (ℓ𝑘)) ≥ 𝛼min (6.9)

is stored as the reconnection vertex.

When shifted, the offset path is generated using random replay until y𝑘−1

which is then connected to x𝑘 . To be invertible, it is also required that

| |x𝑘 − y𝑘−1
| | ≥ 𝑑min (6.10)

and
5

min(𝛼y𝑘−1

(ℓ𝑘−1), 𝛼x𝑘 (ℓ𝑘)) ≥ 𝛼min . (6.11)

Importantly, there cannot be a 𝑘′ < 𝑘 that satisfies the same conditions, i.e.

| |y𝑘′ − y𝑘′−1
| | ≥ 𝑑min and min(𝛼(ℓ ′

𝑘′−1
), 𝛼(ℓ ′

𝑘′)) ≥ 𝑑min cannot be both true

for a 𝑘′ < 𝑘. Otherwise, the offset path could have computed a different 𝑘

(had it been the base path) and the invertibility is broken. Non-invertible

samples get zero weight in RIS.

Path Samples with Lobe/Technique Tags To have a unique mapping

between path space and primary sample spaces (for the random number

sequence), ReSTIR PT extends path samples with lobe and light sampling

technique tags. An extend path sample is represented as

𝑥̄ = [x0 , (x1 ,ℓ1), (x2 , ℓ2), . . . , (x𝐷−1 , ℓ𝐷−1), x𝐷] (6.12)

where 0 ≤ ℓ 𝑗 ≤ 𝑁lobe is an index representing the sampled lobe
6

at vertex

x𝑗 . Specially, when the light is sampled by NEE, the lobe tag ℓ𝐷−1 = 𝑁lobe is

set to indicate the case, and all lobes are contained in x𝐷−1. With these lobe

and technique tags, random replay can produce the exact same (sub)path

produced by a path tracer
7
.

When reconnecting to x𝑘 , it is important to copy the lobe index ℓ𝑘−1 to

ensure bĳection. If such lobe does not exist on y𝑘−1
, then the shift fails.

Additional math notes: Denote the set of all possible lobe/technique index

sequences ℓ̄ = [ℓ1 , ℓ2 , . . .] for length-(𝐷 + 1) paths as L𝐷 , and the set of

lobe-tagged length-(𝐷 + 1) paths as Ω̄𝐷 , the path integral can be rewritten

into the following form:
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[39]: Kettunen et al. (2015), ‘Gradient-

Domain Path Tracing’

𝐼 =
∞∑

𝐷=1

∫
Ω̄𝐷

𝑓 (𝑥̄)d𝑥̄ =

∞∑
𝐷=1

∑
ℓ̄∈L𝐷

∫
A𝐷

𝑚𝑡(𝑥) 𝑓ℓ̄ (𝑥)d𝑥, (6.13)

where 𝑓ℓ is a partial path contribution only evaluating the sampled BSDF

at each path vertex, 𝑚𝑡(𝑥) is the light sampling technique MIS weight

(𝑡 ∈ {0, 1} indicates whether the light vertex is sampled by BSDF or NEE,

and is inferred from ℓ𝐷−1). From this relationship, we can see that the

integrand for an extended path sample 𝑓 (𝑥̄) = 𝑚𝑡(𝑥) 𝑓ℓ (𝑥) contains the light

sampling technique MIS weight and only uses partial path contribution.

Primary Sample Spaces ReSTIR PT uses primary sample space parame-

terization for the paths. There are two benefits:

▶ Path integrands can be expressed as sampled path throughput (prod-

uct of " 𝑓 /𝑝" terms at each bounce), which can be directly provided

by a path tracer. And initial candidate path PDF is always 1. This

also prevents potential floating point number overflows by tracking

𝑓 and 𝑝 separately.

▶ PSS is the more convenient choice for the shift mapping. The random

replay part of the shift mapping has an identity Jacobian determinant.

Only the reconnection phase computes terms for the Jacobian of the

full shift. (If not using PSS, each random replayed path vertex needs

to compute terms for the Jacobian.)

In PSS, the path integral can be expressed as

𝐼 =
∞∑

𝐷=1

∫
U𝐷

𝐹(ū)dū (6.14)

where ū is a random number sequence suitable for producing length-

(𝐷 + 1) paths, U𝐷 = [0, 1]N(𝐷) is a unit hypercube with N(𝐷) (length of

ū) dimensions, and 𝐹(ū) = 𝑓 (X(ū))/𝑝(X(ū)) is the integrand (X maps

ū to the corresponding extended path sample 𝑥̄, and 𝑝(𝑥̄) is the PDF

of the path sample in path space parameterization). Note the one-to-

one correspondence between Equation 6.14 and the left-hand side of

Equation 6.13.

In following text, we provide a deriviation of the hybrid shift Jacobian

determinant PSS in parameterization.

For shifting base path 𝑥 to offset path 𝑦, we denote by 𝜔𝑥
𝑘−1

the unit vector

from x𝑘−1 to x𝑘 , and the corresponding random numbers leading from

vertex x𝑘−1 to x𝑘 by ū𝑥
𝑘−1

.

When using the common solid angle parametrization, the Jacobian for the

reconnection shift is (e.g., [39])�����𝜕𝜔𝑦

𝑘−1

𝜕𝜔𝑥
𝑘−1

����� =
�����cos𝜃

𝑦

𝑘

cos𝜃𝑥
𝑘

����� | |x𝑘 − x𝑘−1 | |2
| |x𝑘 − y𝑘−1

| |2 , (6.15)
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8: If the path vertex x𝑘 is a light vertex

directly sampled by NEE, then 𝑝
𝑤
𝑦

𝑘−1

(y𝑘 )
is the light sampling PDF converted to

solid angle measure and 𝑝
ℓ
𝑦

𝑘−1

= 1 (similar

for x𝑘+1
if x𝑘+1

is a NEE light vertex).

9: If the scene changes, (Δ,𝜆1 ,𝜆2) auto-

matically maps y𝑘 to the potentially ani-

mated triangle. But a temporal shift map-

ping is required to update 𝐿 due to po-

tential geometry or lighting changes. One

way is to reuse the world space direction

𝜔 to find vertex y𝑘+1
and reuse RNG seed

𝜉2 recorded on x𝑘+1
to generate the rest

of the path [y𝑘+2
, ...].

10: If y𝑘 is the light vertex, the path con-

tribution is written with reduced terms

𝛽 · 𝑚𝑡 (𝜔𝑦

𝑘−1

) 𝑓
𝑠,𝜔

𝑦

𝑘−1

(y𝑘 )/𝑝𝜔𝑦

𝑘−1

(y𝑘 ) · 𝐿.

for 𝜃•
𝑘

the angle between 𝜔•
𝑘−1

and the geometric surface normal at x𝑘 =
y𝑘 .

In PSS, the Jacobian determinant of hybrid shift is equal to the local

Jacobian determinant of the reconnection step. The shift mapping changes

the random numbers for both x𝑘−1 and x𝑘 . We have����𝜕ū𝑦

𝜕ū𝑥

���� = �����𝜕ū𝑦

𝑘−1

𝜕ū𝑥
𝑘−1

�����
�����𝜕ū𝑦

𝑘

𝜕ū𝑥
𝑘

����� (6.16)

(the

���� 𝜕ū𝑦

𝑘

𝜕ū𝑥
𝑘

���� term is dropped when x𝑘 = y𝑘 is a light vertex (x𝑘+1 does not

exist).) where�����𝜕ū𝑦

𝑘−1

𝜕ū𝑥
𝑘−1

����� =
����� 𝜕ū𝑦

𝑘−1

𝜕𝜔
𝑦

𝑘−1

�����
�����𝜕𝜔𝑦

𝑘−1

𝜕𝜔𝑥
𝑘−1

����� ����𝜕𝜔𝑥
𝑘−1

𝜕ū𝑥
𝑘−1

���� = 𝑝(𝜔,ℓ )𝑦
𝑘−1

(y𝑘)
𝑝(𝜔,ℓ )𝑥

𝑘−1

(x𝑘)

�����𝜕𝜔𝑦

𝑘−1

𝜕𝜔𝑥
𝑘−1

����� (6.17)

and �����𝜕ū𝑦

𝑘

𝜕ū𝑥
𝑘

����� =
����� 𝜕ū𝑦

𝑘

𝜕𝜔
𝑦

𝑘

����� ����𝜕𝜔𝑥
𝑘

𝜕ū𝑥
𝑘

���� = 𝑝(𝜔,ℓ )𝑦
𝑘
(y𝑘+1

)
𝑝(𝜔,ℓ )𝑥

𝑘
(x𝑘+1)

, (6.18)

where

𝑝(𝜔,ℓ )𝑥
𝑘−1

(x𝑘) = 𝑝𝜔𝑥
𝑘−1

(x𝑘) · 𝑝ℓ 𝑥
𝑘−1

is the joint PDF in solid angle measure for

sampling lobe ℓ 𝑥
𝑘−1

8
and direction 𝜔𝑥

𝑘−1
on path 𝑥 (the PDF and PMF may

implicitly depend on other path vertices, for example, x𝑘−2, as common

BSDF sampling procedures do) and the other terms are similarly defined

on other vertices.

Note that𝜔𝑥
𝑘
= 𝜔

𝑦

𝑘
and ℓ 𝑥

𝑘−1
= ℓ

𝑦

𝑘−1
by our reconnection definition (assuming

the scene is static). Although 𝜔𝑥
𝑘
= 𝜔

𝑦

𝑘
, their sampling PDFs are different

due to different outgoing directions towards the previous path vertices.

Reservoir and implementation details in ReSTIR PT. Algorithm 6 details

the reservoir structure used by ReSTIR PT. In particular, the path sample 𝑌

is represented by the reconnection vertex, the random number generator

(RNG) seeds, and some other information that are sufficient for the shift

mapping and sample evaluation. We explain these class members together

with a typical resampling process (Assume the reconnection vertex y𝑘 is

not a light vertex. The other case is simpler and can be processed similarly.)

as follows:

The RNG seed 𝜉1 generates the offset sub-path [y
2
, y

3
, ..., y𝑘−1

] with a

throughput 𝛽. With y𝑘 = x𝑘 computed using the triangle Id (Δ) and the

barycentrics tuple (𝜆1 ,𝜆2)
9

, and the incident direction 𝜔 (same as 𝜔𝑥
𝑘
)

with corresponding radiance estimate 𝐿, and the lobe indices ℓ𝑘 , ℓ𝑘+1, the

reconnected PSS path contribution can be evaluated as 𝐹(𝑌) = 𝑝̂(𝑌) =
𝛽 ·𝑚𝑡(𝜔𝑦

𝑘
) 𝑓𝑠,𝜔𝑦

𝑘−1

(y𝑘)/𝑝𝜔𝑦

𝑘−1

(y𝑘) · 𝑓𝑠,𝜔𝑦

𝑘
(y𝑘+1

)/𝑝𝜔𝑦

𝑘
(y𝑘+1

) · 𝐿 10
, where 𝑚𝑡(𝝎𝑦

𝑘
)

is the MIS weight for sampling 𝜔
𝑦

𝑘
using technique 𝑡 (𝑡 ∈ {0, 1} indicates

BSDF or NEE and is inferred from the lobe index). 𝑚𝑡(𝝎𝑦

𝑘
) = 1 if y𝑘+1

is not a light vertex, and is the traditional light sampling MIS weight
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Algorithm 6: Reservoir in ReSTIR PT.

1 class Reservoir

2 struct Y
3 struct RcVertex

4 𝜔, 𝐿, (Δ,𝜆
1
,𝜆2), ℓ𝑘−1

, ℓ𝑘

5 RcVertex, 𝜉
1
, 𝜉2 , 𝑘, 𝐽

6 𝑌,𝑊𝑌 ← ∅, 0 // The output sample

7 𝑤sum ← 0 // The sum of weights

8 𝑐 ← 0 // Confidence weight of output

[3]: Lin et al. (2021), ‘Fast Volume Render-

ing with Spatiotemporal Reservoir Resam-

pling’

otherwise. The Jacobian for the shift mapping can be computed using

Equation 6.16. Note that the reservoir stores the part associated with the

base path (𝐽 = 𝑝𝜔𝑥
𝑘−1

(x𝑘)· | cos𝜃𝑥
𝑘
|/| |x𝑘−x𝑘−1 | |2 ·𝑝𝝎𝑥

𝑘
(x𝑘+1)) which is updated

after each RIS to avoid the duplicated effort of re-computing it in the next

resampling.

6.7 Volume rendering

ReSTIR can also be extended to handle general light transport with par-

ticipating media [3]. With participating media, the per-bouce integration

domain becomes the union of surface area and volume, i.e. M = A ∪ V.

The pixel intensity can be written as an integral of measurement contribu-

tion

𝐼 𝑗 =
∞∑

𝐷=1

∫
M𝐷+1

𝑊
(𝑗)
𝑒 (x1 → x0)𝑇(x0 ↔ x1)𝐺̄(x0 ↔ x1)

(𝐷−1∏
𝑗=1

𝑓𝑠(x𝑗+1 → x𝑗

→ x𝑗−1)𝐺̄(x𝑗 ↔ x𝑗+1)𝑇(x𝑗 ↔ x𝑗+1)
)
𝐿̄𝑒(x𝐷 → x𝐷−1)dx0dx1dx2 . . . dx𝐷 ,

(6.19)

where 𝑊
(𝑗)
𝑒 is the pixel response function of pixel 𝑗 (importance function

multiplied with pixel filter) and x0 is a point on the camera sensor (image

plane).

Assume a pinhole camera and we are interested only in the radiance

arriving at a specific subpixel location, we can write an equation similar to

Equation 4.2

𝐿(𝝎0 → x0) = 𝑇(x0 ↔ x𝑠
1
)(𝐿𝑒(x𝑠

1
→ x0) + 𝑃(x0 , x𝑠

1
))+∫ 𝑠

0

𝑇(x0 ↔ x1)(𝜎𝑎(x1)𝐿𝑚𝑒 (x1 → x0) + 𝑃(x0 , x1))d𝑧1 ,
(6.20)

where 𝑧1 is the collision distance with the relationship x1 = x0 + 𝑧1𝝎0 (𝝎0

is determined by the subpixel location), x𝑠
1

is the closest opaque surface

intersected with 𝑠 = | |x𝑠
1
− x0 | |, and
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𝜎𝑡 := extinction coefficient

𝜎𝑠 := scattering coefficient

𝜎𝑎 := absorption coefficient

𝜎𝑡 (x) = 𝜎𝑠 (x) + 𝜎𝑎(x),∀x

11: In some cases where the spatial distri-

bution 𝜎𝑡 is piecewise "simple" (e.g. piece-

wise constant or trilinearly interpolated by

neighboring grid points), the close form

can be computed.

[3]: Lin et al. (2021), ‘Fast Volume Render-

ing with Spatiotemporal Reservoir Resam-

pling’

12: For general volumes, collision dis-

tances can be sampled according to trans-

mittance by delta tracking [34] but the

PDFs are unknown.

13: If x1 is on a surface, the shift mapping

in Volumetric ReSTIR puts the shifted x1

on the closest surface in the target pixel.

The same applies for the remaining path

vertices. Bĳection is maintained by requir-

ing both the original and the shifted vertex

to be on the closest surfaces or in the (un-

occluded) media.

𝑃(x0 , x1) =
∞∑

𝐷=2

∫
M𝐷−1

(𝐷−1∏
𝑗=1

𝑓𝑠(x𝑗+1 → x𝑗 → x𝑗−1)

𝐺̄(x𝑗 ↔ x𝑗+1)𝑇(x𝑗 ↔ x𝑗+1)
)
𝐿̄𝑒(x𝐷 → x𝐷−1)dx2 . . . dx𝐷

(6.21)

is a shorthand for the "in-scattered" path contribution from a point x1 to x0.

𝑓𝑠 , 𝐺̄, 𝐿̄𝑒 are generalized bidirectional scattering function, geometry term,

and vertex emission, respectively: 𝑓𝑠 = 𝜎𝑠(x𝑗)𝜌(x𝑗+1 → x𝑗 → x𝑗−1) if x𝑗 is in

volume and 𝑓𝑠 = 𝑓𝑠 if x𝑗 is on surface, 𝐺̄ = 1/||x𝑗 − x𝑗+1 | |2 if x𝑗 is in volume

and 𝐺̄ = 𝐺 is x𝑗 is on surface, 𝐿̄𝑒(x𝐷 → x𝐷−1) = 𝜎𝑎(x𝐷)𝐿𝑚𝑒 (x𝐷 → x𝐷−1) if
x𝐷 is in volume and 𝐿̄𝑒 = 𝐿𝑒 if x𝐷 is on surface.

The main difference from surface-only light transport is that a path vertex

can live in the entire 3D space instead of only 2D manifolds in 3D. Thus,

path sampling usually needs to include the sampling of collision distance.

In addition, the integrand includes transmittance terms which may not be

obtainable in closed form
11

. Note that

𝑇(x↔ y) = e
−

∫ 𝑧

0

𝑦𝜎𝑡 (x−𝑦𝝎)d𝑦
(6.22)

defines the transmittance between x and y along direction 𝝎 =
y−x
𝑧 where

𝑧 = | |y−x| |. Because the transmittance contains an integral which is usually

costly to evaluate, Volumetric ReSTIR [3] uses a simplified 𝑝̂ which has

transmittance terms approximated by ray marching. The ray marching step

size controls the accuracy of approximation and trades between speed and

sampling variance
12

. Besides, Volumetric ReSTIR evaluates transmittance

in 𝑝̂ with low resolution volumes to minimize memory cost. A piece-wise

constant, low resolution volume is used for initial path sampling so that

the transmittance function can be inverted analytically to produce distance

samples with closed-form path PDFs. By reserving the accurate evaluation

of path transmittance for final shading, Volumetric ReSTIR achieves efficient

resampling, allowing low-noise, interactive volume rendering in complex

lighting scenarios.

Because x1 depends on the sampled collision distance, Volumetric ReSTIR

copies the collision distance 𝑧1 to create the shifted x1 in a different pixel
13

.

For the remaining path, Volumetric ReSTIR presented two reuse methods.

The first method (vertex reuse) copies the vertex sequence [x2 , . . . , x𝐷]
like reconnection shift in ReSTIR PT. The second method (direction reuse)

copies the scattering direction and collision distance of all path segments

to retrace the shifted path except for the last one where the light vertex is

reconnected, i.e. the sequence [𝑧1 ,𝝎1 , 𝑧2 ,𝝎2 , . . . , 𝑧𝐷−1 , x𝐷].

While vertex reuse has performance advantage, Lin et al. [3] observed

excessive amount of fireflies caused by geometric singularity, so they

opted for the slower direction reuse by default. To improve direction reuse,

ideas from ReSTIR PT’s hybrid shift could be combined: for example,

reconnection should happen whenever the reconnection segment length is

longer than the distance threshold. Since a distance sample can be generated

using only one random number (sampling the transmittance and solve for
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the distance), replacing distance/direction reuse with random replay is

also feasible.
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One key appeal of resampling, and ReSTIR in particular, is it offers high

quality sampling for real-time rendering, so high-performing implemen-

tations are vital for real applications. But before talking about specific

optimizations, let’s step back and ask what we should optimize.

After all, ReSTIR is a general sampling technique. Sampling techniques are

usually evaluated based on sampling efficiency, combining sample cost and

quality into a single metric. Because ReSTIR is based on resampling, the

efficiency of the sampler is affected by what neighbors it chooses to reuse

and the choice of MIS weights. In addition, efficiency can be improved by

low-level optimizations, improving sample quality at a given performance,

or both. As a result, we categorize the optimization techniques into sampler
optimization and low-level optimization.

7.1 Sampler optimization

One way to look at RIS and ReSTIR: fundamentally, they are simply ways of

combining multiple estimators together using MIS weights. Each pixel we

borrow from is actually a different estimator we can use to draw samples for

our current pixel. Frequently, people learn about MIS by exploring Veach

et al.’s [32] sample combination of BSDF and light samples, but MIS can

be used to combine almost any estimators together, including our strange

resampled-neighbor estimators.

Figure 7.1: Sea anemone, with spindly fea-

tures where neighbor pixels might be poor

estimators for the current pixel. (Image

CC-by-SA-3.0, Massimiliano De Martino).

An easily overlooked, but important point is that combining estimators with

MIS is not guaranteed to improve sampling quality. Generally, combining

BSDF and light samples is almost always a win, so it is easy to forget this

point. But when reusing neighbor pixel samples, it is fairly easy to select

neighbors that are horrible estimators for your current pixel.

Consider the sea anemone in Figure 7.1, where nearby neighbors may have

surface normals in, essentially, opposite directions. The set of paths that

contribute to both these neighbors is largely empty. Because of this, reusing

samples across these neighbors is unlikely to prove beneficial. In fact, such

reuse typically increases noise.

Defining a way to skip reuse from obviously irrelevant neighbors can, thus,

provide an efficiency gain.

This need not bias the result, if done carefully. For instance, skipping reuse

if the surface normals at primary hits vary too much is fine. Heuristics for

skipping reuse are unbiased if they do not look at individual samples or

weights. Reasoning about their domains is fine, but making decisions on

specific samples generally conditions them, moving reuse into conditional

probability spaces.

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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[1]: Bitterli et al. (2020), ‘Spatiotemporal
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Tracing with Dynamic Direct Lighting’

[4]: Lin et al. (2022), ‘Generalized Resam-

pled Importance Sampling’

Heuristics we have found useful include ensuring surface normals, depths,

and material properties do not vary significantly between reused pixels.

7.1.1 Neighbor rejection as approximate “MIS weights”

As discussed repeatedly, e.g., in Section 2.2 and Section 3.2, ensuring that

resampling remains unbiased requires careful tracking of each sample’s

supports, i.e., understanding which pixels could generate a particular

sample. Without such tracking, it is extremely easy to under or overcount

contributions in certain parts of the integration domains. This leads to bias

in the form of unexpected brightening or darkening. Computing correct

MIS weights is generally required for RIS or GRIS to remain unbiased if

the candidate samples were produced from different sampling techniques

(e.g., come from different pixels).

A problem of using the balance heuristic for MIS as described in Section 5.3

is the 𝑂(𝑀2) cost grows quickly when 𝑀 is large. One way to optimize

performance is to use an incorrect, constant 1/𝑀 MIS weights (as in Bitterli

et al.’s [1] biased implementation) and reduce the bias using neighbor rejec-

tion. In fact, neighbor rejection can then be thought of as an approximation

of Veach’s cutoff heuristic [31], where techniques with too low PDF values

simply have their terms discarded in the MIS weight (neighbor rejection

presumes that samples from a pair of incompatible domains have low

importance on each other’s domain).

Besides the biased approximate “MIS weights” offered by neighbor rejection,

there are cheap, correct MIS weights we can use to make the estimator fully

unbiased.

7.1.2 Contribution MIS weights

Bitterli et al. [1] show that it is possible to only evaluate the MIS weight for

the selected sample and stay unbiased. This is called a contribution MIS in

the GRIS framework [4].

For 𝑀-sample GRIS with resampling weights 𝑤𝑖 = 𝑚𝑖(𝑇𝑖(𝑋𝑖))𝑝̂(𝑇𝑖(𝑋𝑖))𝑊𝑖 ·��� 𝜕𝑇𝑖𝜕𝑋𝑖

���, denote the selected index as 𝑠, it has been shown [4] that the selected

sample 𝑌 = 𝑇𝑠(𝑋𝑠) can use the following unbiased contribution weight:

𝑊𝑌 =

[
𝑐𝑠(𝑌)
𝑚𝑠(𝑌)

]
1

𝑝̂(𝑌)
𝑀∑
𝑗=1

𝑤 𝑗 (7.1)

as long as

𝑀∑
𝑖=1

𝑦∈𝑇𝑖 (supp𝑋𝑖 )

𝑐𝑖(𝑦) = 1. (7.2)

Each 𝑚𝑖 can pretty much be an arbitrary function as long as it guarantees

that 𝑤𝑖 > 0 iff 𝑋𝑖 ∈ D(𝑇𝑖) and 𝑝̂(𝑌𝑖) > 0. If 𝑚𝑖 satisfies the same equation

(Equation 7.2) as 𝑐𝑖 , it is a proper resampling MIS weight and cancels 𝑐𝑖 in
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Equation 7.1, yielding the familiar unbiased contribution weight equation

(Equation 3.2).

Bitterli et al. [1] use constant 𝑚𝑖(𝑥) = 1

𝑀 and (generalized) balance heuristic

for 𝑐𝑖 . Since 𝑐𝑖 is not in 𝑤𝑖 and only 𝑐𝑠 (𝑐𝑖 of the selected sample) needs to

be evaluated, the cost is reduced to 𝑂(𝑀). Although debiasing with only

contribution MIS weights performs reasonably well in direct lighting, it

can add excessive noise to a selected sample’s contribution if the difference

between domains is large, which is especially noticeable in participating

media [3]. In addition, convergence of sample distribution to the target

PDF can only be achieved with proper resampling MIS weights 𝑚𝑖 [4].

7.1.3 Pairwise MIS weights

To obtain a cheap resampling MIS weight, Bitterli [7] proposes pairwise

MIS. A common assumption for multiple importance sampling is that the

developer has no advance knowledge about which estimator might be

better; each estimator may have places it ends up superior to others, but

over the whole integration domain no clear winner exists.

Instead, pairwise MIS considers a setting with 𝑀 sampling techniques

where one of them is canonical—this estimator covers the entire integration

domain and produces relatively high-quality samples compared to other

techniques. As an example, note that the canonical technique corresponds

to the “current pixel” in spatial resampling and non-canonical techniques

correspond to the neighboring pixels.

The core idea of pairwise MIS is to compute a "pairwise" balance heuristic

MIS weight between pairs of samples: each sample pairs with the canonical

sample (the sample produced by the canonical technique). This yields the

following MIS weights (the canonical technique is assigned index 𝑐):

𝑚𝑖(𝑥) =
1

𝑀 − 1

𝑝𝑖(𝑥)
𝑝𝑖(𝑥) + 𝑝𝑐(𝑥)

(𝑖 ≠ 𝑐)

𝑚𝑐(𝑥) =
1

𝑀 − 1

𝑀∑
𝑗≠𝑐

𝑝𝑐(𝑥)
𝑝 𝑗(𝑥) + 𝑝𝑐(𝑥)

.

(7.3)

It is easy to verify that this set of weights satisfies the requirements of valid

MIS weights. Note that pairing with the canonical technique allows the

MIS weight to account for how each technique compares to the canonical

technique.

However, Equation 7.3 assigns disproportionally large weight to the canon-

ical sample. To see why, assume that all sampling techniques are identical,

i.e. 𝑝𝑖(𝑥) = 𝑝 𝑗(𝑥) for all 𝑖 , 𝑗, 𝑚𝑐(𝑥) will be 𝑀 − 1 times larger than all other

𝑚𝑖(𝑥). To correct this, it is important to downweight 𝑝𝑐(𝑥). By requiring

that the MIS weights are the same with identical techniques, it can be

solved that the weighting factor for 𝑝𝑐(𝑥) needs to be 1/(𝑀 − 1). This gives

the modified equation:
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[7]: Bitterli (2022), ‘Correlations and Reuse

for Fast and Accurate Physically Based

Light Transport’

Tip 7.1 If 𝑝̂←𝑖 = 𝑝̂←𝑗 = 𝑝̂𝑐 for all 𝑖 , 𝑗,

non-defensive pairwise MIS reduces to

𝑚𝑖 =
𝑐𝑖∑𝑀

𝑘=1

𝑐𝑘
for all 𝑖.

Tip 7.2 Defensive pairwise MIS lerps

between non-defensive and giving all

weight to the canonical sample with

𝑡𝑐 = 𝑐𝑐/
∑

𝑘 𝑐𝑘 . E.g., if 𝑝̂←𝑖 = 𝑝̂←𝑗 = 𝑝̂𝑐
for all 𝑖 , 𝑗, it reduces to

𝑚𝑖 = (1 − 𝑡𝑐) ·
𝑐𝑖∑𝑀

𝑘=1

𝑐𝑘
(𝑖 ≠ 𝑐)

𝑚𝑐 = 𝑡𝑐 + (1 − 𝑡𝑐) ·
𝑐𝑐∑𝑀
𝑘=1

𝑐𝑘
.

[4]: Lin et al. (2022), ‘Generalized Resam-

pled Importance Sampling’

𝑚𝑖(𝑥) =
1

𝑀 − 1

𝑝𝑖(𝑥)
𝑝𝑖(𝑥) + 𝑝𝑐(𝑥)/(𝑀 − 1) (𝑖 ≠ 𝑐)

𝑚𝑐(𝑥) =
1

𝑀 − 1

𝑀∑
𝑗≠𝑐

𝑝𝑐(𝑥)/(𝑀 − 1)
𝑝 𝑗(𝑥) + 𝑝𝑐(𝑥)/(𝑀 − 1) .

(7.4)

Like in MIS using the balance heuristic, 𝑝̂ can be used as proxy PDFs in the

ReSTIR scenario, yielding the generalized pairwise MIS:

𝑚𝑖(𝑥) =
1

𝑀 − 1

𝑝̂𝑖(𝑥)
𝑝̂𝑖(𝑥) + 𝑝̂𝑐(𝑥)/(𝑀 − 1) (𝑖 ≠ 𝑐)

𝑚𝑐(𝑥) =
1

𝑀 − 1

𝑀∑
𝑗≠𝑐

𝑝̂𝑐(𝑥)/(𝑀 − 1)
𝑝̂ 𝑗(𝑥) + 𝑝̂𝑐(𝑥)/(𝑀 − 1) .

(7.5)

Because 𝑝̂𝑖 are approximations, it is possible that 𝑚𝑖(𝑥), for 𝑖 ≠ 𝑐, are large

even if samples are poor; this gives the canonical sample too low of a weight.

To protect against this effect, pairwise MIS [7] can be designed to give the

canonical sample a defensive constant in the weight by adding 1 to the sum.

This gives the defensive form of pairwise MIS:

𝑚𝑖(𝑥) =
1

𝑀

𝑝̂𝑖(𝑥)
𝑝̂𝑖(𝑥) + 𝑝̂𝑐(𝑥)/(𝑀 − 1) (𝑖 ≠ 𝑐)

𝑚𝑐(𝑥) =
1

𝑀

(
1 +

𝑀∑
𝑗≠𝑐

𝑝̂𝑐(𝑥)/(𝑀 − 1)
𝑝̂ 𝑗(𝑥) + 𝑝̂𝑐(𝑥)/(𝑀 − 1)

)
.

(7.6)

Similar to balance heuristic (Equation 5.11), pairwise MIS weights have

forms using confidence weights, rather than explicit sample counts based

on 𝑀. Enabling confidence weights and shift mappings, using the shortcuts

𝑝̂←𝑖 (Equation 5.9), the non-defensive form (Equation 7.5) generalizes to

𝑚𝑖(𝑦) =
𝑐𝑖 𝑝̂←𝑖(𝑦)(∑𝑀

𝑘≠𝑐
𝑐𝑘

)
𝑝̂←𝑖(𝑦) + 𝑐𝑐 𝑝̂𝑐(𝑦)

(𝑖 ≠ 𝑐)

𝑚𝑐(𝑦) =
𝑀∑
𝑗≠𝑐

(
𝑐 𝑗∑𝑀
𝑘≠𝑐

𝑐𝑘

)
𝑐𝑐 𝑝̂𝑐(𝑦)(∑𝑀

𝑘≠𝑐
𝑐𝑘

)
𝑝̂←𝑗(𝑦) + 𝑐𝑐 𝑝̂𝑐(𝑦)

,

(7.7)

and the defensive form (Equation 7.6) generalizes to

𝑚𝑖(𝑦) =
(∑𝑀

𝑘≠𝑐
𝑐𝑘∑𝑀

𝑘=1
𝑐𝑘

)
𝑐𝑖 𝑝̂←𝑖(𝑦)(∑𝑀

𝑘≠𝑐
𝑐𝑘

)
𝑝̂←𝑖(𝑦) + 𝑐𝑐 𝑝̂𝑐(𝑦)

(𝑖 ≠ 𝑐)

𝑚𝑐(𝑦) =
𝑐𝑐∑𝑀
𝑘=1

𝑐𝑘
+

𝑀∑
𝑗≠𝑐

(
𝑐 𝑗∑𝑀
𝑘=1

𝑐𝑘

)
𝑐𝑐 𝑝̂𝑐(𝑦)(∑𝑀

𝑘≠𝑐
𝑐𝑘

)
𝑝̂←𝑗(𝑦) + 𝑐𝑐 𝑝̂𝑐(𝑦)

.

(7.8)

ReSTIR PT [4] observes the 𝑂(𝑀) pairwise MIS gives comparable conver-

gence behavior as the 𝑂(𝑀2) balance heuristic and adopts the defensive
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Algorithm 7: Generalized Pairwise MIS (Defensive Variant)

Input : 𝑦 ∈ Ω where 𝑚𝑖(𝑦) is evaluated.

Input :Original 𝑥 ∈ Ω𝑖 that yielded 𝑦. We assume 𝑦 = 𝑇𝑖(𝑥).
Input : Jacobian determinant

��𝑇′
𝑖
(𝑥)

��
of the shift 𝑦 = 𝑇𝑖(𝑥).

Output :Generalized defensive pairwise MIS weight 𝑚𝑖(𝑦).
1 function pHatFrom(j, y) // 𝑝̂←𝑗(𝑦) for generic 𝑦 ∈ Ω.

2 𝑥 𝑗 , 𝐽𝑥 𝑗 ← 𝑇−1

𝑗
(𝑦), |𝑇−1

𝑗

′(𝑦)| // Shift 𝑦 into Ω𝑗 and eval Jacobian.

3 if 𝑥 𝑗 ≠ ∅ then // If shift succeeded

4 return 𝑝̂ 𝑗(𝑥 𝑗) · 𝐽𝑥 𝑗 // 𝑝̂ 𝑗(𝑇−1

𝑗
(𝑦)) |𝑇−1

𝑗

′(𝑦)|

5 return 0

6 function pHatFrom_opt(𝑗 , 𝑥, |𝑇′
𝑗
(𝑥)|) // 𝑝̂←𝑗(𝑦) optimized for 𝑦 = 𝑇𝑗(𝑥)

7 return 𝑝̂ 𝑗(𝑥)/|𝑇′𝑗 (𝑥)| // 𝑝̂ 𝑗(𝑇−1

𝑗
(𝑦)) |𝑇−1

𝑗

′(𝑦)|.

8 function GenPairwiseMIS_canonical(𝑦) // 𝑚𝑐(𝑦)
9 𝑐tot ←

∑𝑀
𝑘=1

𝑐𝑘

10 𝑚𝑐 ← 𝑐𝑐
𝑐tot

11 𝑚num ← 𝑐𝑐 · 𝑝̂𝑐(𝑦)
12 for 𝑗 ← 1 to 𝑀; 𝑗 ≠ 𝑐 do //

∑𝑀
𝑗≠𝑐
· · ·

13 𝑚
den
← 𝑚num + (𝑐tot − 𝑐𝑐) · pHatFrom(𝑗 , 𝑦) // 𝑚num + (

∑𝑀
𝑘≠𝑐

𝑐𝑘 )𝑝̂←𝑗(𝑦)
14 𝑚𝑐 ← 𝑚𝑐 +

𝑐 𝑗
𝑐tot

· 𝑚num

𝑚den

15 return 𝑚𝑐 //
𝑐𝑐∑𝑀

𝑘=1

𝑐𝑘
+∑𝑀

𝑗≠𝑐

(
𝑐 𝑗∑𝑀

𝑘=1

𝑐𝑘

)
𝑐𝑐 𝑝̂𝑐 (𝑦)(∑𝑀

𝑘≠𝑐
𝑐𝑘

)
𝑝̂←𝑗 (𝑦)+𝑐𝑐 𝑝̂𝑐 (𝑦)

16 function GenPairwiseMIS_noncanonical(𝑖 , 𝑦; 𝑥,
��𝑇′
𝑖
(𝑥)

��) // 𝑚𝑖(𝑦) (𝑦 = 𝑇𝑖(𝑥))
17 𝑐tot ←

∑𝑀
𝑘=1

𝑐𝑘

18 𝑚num = (𝑐tot − 𝑐𝑐) · pHatFrom_opt(𝑖 , 𝑥, |𝑇′
𝑖
(𝑥)|) // (∑𝑀

𝑘≠𝑐
𝑐𝑘 ) 𝑝̂←𝑖(𝑦)

19 𝑚
den

= 𝑚num + 𝑐𝑐 · 𝑝̂𝑐(𝑦) // (∑𝑀
𝑘≠𝑐

𝑐𝑘 ) 𝑝̂←𝑖(𝑦) + 𝑐𝑐 𝑝̂𝑐(𝑦)

20 return 𝑐𝑖
𝑐tot

· 𝑚num

𝑚den

//

∑𝑀
𝑘≠𝑐

𝑐𝑘∑𝑀
𝑘=1

𝑐𝑘
· 𝑐𝑖 𝑝̂←𝑖 (𝑦)
(∑𝑀

𝑘≠𝑐
𝑐𝑘 ) 𝑝̂←𝑖 (𝑦)+𝑐𝑐 𝑝̂𝑐 (𝑦)

Note:
Return 0 if 𝑦 is a null sample; this avoids 0/0. See Tip 3.13.

form as the default choice for spatial resampling in GRIS (see Algorithm 7

for pseudocode). A generalized family of pairwise MIS weights is also

discussed in Lin et al. [4].

7.1.4 Biased MIS Weights

With an understanding how the bias arises, careful algorithmic modifica-

tions can compute slightly incorrect MIS weights (on purpose) in the name

of efficiency.

Imagine reuse between pixels 𝑖 and 𝑗, which have selected samples 𝑋𝑖

and 𝑋𝑗 . Using the balance heuristic for MIS weights requires evaluating

either:

𝑚𝑖(𝑋𝑖) =
𝑝𝑖(𝑋𝑖)

𝑝𝑖(𝑋𝑖) + 𝑝 𝑗(𝑋𝑖)
or 𝑚 𝑗(𝑋𝑗) =

𝑝 𝑗(𝑋𝑗)
𝑝𝑖(𝑋𝑗) + 𝑝 𝑗(𝑋𝑗)

. (7.9)
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While 𝑝𝑖(𝑋𝑖) and 𝑝 𝑗(𝑋𝑗) are already computed as part of resampling, 𝑝𝑖(𝑋𝑗)
and 𝑝 𝑗(𝑋𝑖) require reevaluating a sample in a pixel that did not generate

it. This is new computation. Very concretely, if our samples 𝑋 are rays or

paths, reevaluating them at a neighbor requires tracing new rays! This can be

expensive or simply add complex new engineering to make it possible.

For example, when doing temporal reuse where pixel 𝑗 comes from the

previous frame, then 𝑝 𝑗(𝑋𝑖) requires taking candidate 𝑋𝑖 , generated during

the current frame 𝑖, and reevaluating its path using the previous frame’s
data. This includes using the prior frame BVH ray acceleration structure,

which is obviously unappealing.

Fortunately, after understanding the causes of bias, you can make informed

decisions on whether biased approaches are objectionable. For instance,

using the current frame BVH as a stand in for the prior frame BVH;

assuming 𝑝 𝑗(𝑋𝑖) = 0; or recomputing 𝑝 𝑗(𝑋𝑖) using last frame’s data but

assuming visibility does not change.

In particular, consider the simple balance heuristic MIS weight from

Equation 7.9:

𝑚𝑖(𝑋𝑖) =
𝑝𝑖(𝑋𝑖)

𝑝𝑖(𝑋𝑖) + 𝑝 𝑗(𝑋𝑖)
(7.10)

The boxed weight 𝑝 𝑗(𝑋𝑖) is the tricky one, requiring more expensive

computations using last frame’s data. But you can consider the expected bias

in very simplistic terms. If you replace 𝑝 𝑗(𝑋𝑖) by some biased approximation

𝑝̃ 𝑗(𝑋𝑖), either:

▶ 𝑝̃ 𝑗(𝑋𝑖) > 𝑝 𝑗(𝑋𝑖), lowering 𝑚𝑖(𝑋𝑖) and adding a darkening bias;

▶ 𝑝̃ 𝑗(𝑋𝑖) = 𝑝 𝑗(𝑋𝑖), adding no bias for 𝑋𝑖 ; or

▶ 𝑝̃ 𝑗(𝑋𝑖) < 𝑝 𝑗(𝑋𝑖), increasing 𝑚𝑖(𝑋𝑖) and adding a brightening bias.

And obviously, approximations 𝑝̃ 𝑗 are not limited to always be greater than

or less than the correct probability density. For some 𝑋𝑖 , 𝑝̃ 𝑗 > 𝑝 𝑗 and for

others 𝑝̃ 𝑗 < 𝑝 𝑗 . This can cause both darkening and brightening biases in

different parts the image or under different type of motion or animation.

As a quick example, assuming 𝑝 𝑗(𝑋𝑖) = 0 means any sample generated this

frame could not have been selected last frame. This is clearly not (always)

true, especially in static scenes. Some such samples were likely selected

last frame and forwarded via spatiotemporal reuse to the current frame.

Because of this simplistic assumption, these samples are over-represented

in our sample pool; this means we overcount, giving a brightening bias.

7.2 Low-level optimization

For low-level optimization, defining specific performance goals can be

vital to achieving a target budget. These performance goals usually need

to consider the computation model of the hardware. Various metrics you

could reasonably optimize exist, including:
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[30]: Chao (1982), ‘A General Purpose Un-

equal Probability Sampling Plan’
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tiotemporal Reservoir Reuse for Ray-
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[1]: Bitterli et al. (2020), ‘Spatiotemporal

Reservoir Resampling for Real-Time Ray

Tracing with Dynamic Direct Lighting’

▶ Minimize the per-pixel shadow ray count (Bitterli et al.’s [1] original

goal, targeting scenes with millions of lights).

▶ Minimize the number of paths traced.

▶ Maximize sample reuse; path samples are costly, so reuse each as

much as possible to minimize cost per reuse.

▶ Minimize correlation in final shading, so denoisers behave better.

▶ Maximize parallelization and streaming reuse for GPU utilization

(e.g., using weighted reservoir sampling [30]).

▶ Minimize size of intermediate buffers (e.g., reservoir size).

▶ Minimize memory bandwidth.

▶ Minimize execution divergence (ensuring maximal thread counts

active in each GPU warp).

▶ Minimize memory divergence (to avoid thrashing caches and mini-

mizing memory access costs).

▶ Minimize frame time. (ReSTIR benefits significantly from temporal
reuse, so overall quality may improve by reducing the quality gained

per-frame if you can instead reuse across frames much more quickly.)

▶ Plus other traditional low-level optimization targets, e.g., minimizing

register usage.

Additionally, some optimization techniques remain unbiased, while others

fundamentally add bias. Others add bias unless you apply more sophisti-

cated mathematics; this may not be a desirable trade for your application.

An obvious question that occurs to every experienced rendering engineer

considering ReSTIR is, “why not sparsely sample on some world-space

grid to improve performance?” (e.g., [8, 20]). This reduces ray (or path)

count and total reservoir memory in a relatively linear way, but ReSTIR

memory usage is already fairly minimal and ray count is only vital on very

low-end ray tracing hardware. But in exchange, grid based reuse adds bias

that we are only just learning to control (with as-yet unpublished theory).

Other optimizations might give you more well-rounded performance

improvements with less bias baggage. Here we provide three examples of

low-level optimizations in ReSTIR DI and ReSTIR PT.

7.2.1 Sample tiling in ReSTIR DI

Figure 7.2: Amusement Park with over 3

million emissive triangle lights.

When we first started optimizing Bitterli et al.’s [1] ReSTIR for direct lighting,

we asked folks on our performance team for advice. Our Amusement

Park has over 3 million emissive triangles and just picking random light

candidates took up to 25 milliseconds, without any fancy spatiotemporal

reuse!

One fact obvious from any basic profiling was: as lighting complexity

increased, so did our memory access costs. Essentially, we were thrashing

our memory caches. Each random light sample selected a light residing

in a different cache line. The first, and only somewhat facetious, response

from our performance analysis team was, “design a different algorithm,

without random sampling!”
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[5]: Wyman et al. (2021), ‘Rearchitecting

Spatiotemporal Resampling for Produc-

tion’

But what they really meant was “redesign the algorithm to avoid accessing

multiple random cache lines every pixel,” or more simply “amortize the

memory access costs.” So... how to do this?

The great thing about the Amusement Park scene is its over-the-top lighting

complexity helps identify places where naive algorithms are wasteful. In a

1920 × 1080 image, we have around 2 million pixels. If each pixel selects

one light (via ReSTIR) to shade, we at most use two thirds of the lights for

shading each frame! We could clearly reduce cache thrash if we reorganize

(and compact) the lights each frame so we only search those relevant for

that frame’s shading.

But determining which lights are relevant to each frame is non-obvious.

Perhaps we should start simpler, maybe with a stratification approach?

What if we used only a quarter of the lights in the scene? If we always

picked from this same small subset of lights, the other 3/4 would never

appear to emit light. But if frames alternate which 1/4 of the lights are

sampled, over time we could pick from any light. And because ReSTIR

reuses samples spatiotemporally, very important lights selected two or

three frames ago can still impact lighting this frame.

But this can be amplified to dramatically reduce memory access costs.

While sampling from a rotating subset of only 1/4 of the lights each frame

seems reasonable, sampling from only 1/1000 of the lights is not obviously

still useful.

But what if only considering sampling for a small image region, say a

16×16 pixel tile? If each pixel in that tile selected a random light via ReSTIR,

that tile needs at most 256 unique lights. Perhaps we could pick that set of

samples from a subset of 1024 or 2048 scene lights?

That is the basic idea behind sample tiling, giving the following simple

algorithm:

1. Each frame, generate light subsets 𝑆, each containing a random

selection of all scene lights. Select lights for subsets using the PDF 𝑝

normally used to select candidates without sample tiling (e.g., pick

lights proportional to their intensity).

2. For each screen tile (e.g., 8 × 8 or 16 × 16 pixels), pick one of this

frame’s light subsets 𝑆𝑖 to use.

3. For each pixel in a screen tile, select the needed number of candidates

from tile 𝑖’s selected subset 𝑆𝑖 . Pick from the lights in the tile uniformly

randomly (i.e., probabilty of 1/𝑁 each, if each tile has 𝑁 lights).

Usually, generating 128 light subsets each containing 1024 light samples is

sufficient across a wide variety of scenes, including the Amusement Park [5].

However, for simple scenes with few lights (i.e.,≪ 128,000) the overhead of

building these tiles (under 0.1 ms) may overwhelm any caching benefits.

It turns out this precomputed sample tiling is a degenerate form of resam-

pled importance sampling (see Wyman and Panteleev [5]), where the target

function of this RIS step is 𝑝.
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This degenerate sample tiling is a way of using RIS to reorganize sampling

to be more cache coherent. This is an extremely powerful idea, and can be

used in more complex sampling scenarios than direct lighting.

7.2.2 Lighting with many analytic light types

Many applications may have multiple light types, each with its own (po-

tentially expensive) sampling code. For instance, you might have emissive

spheres, quad, cylinders, triangles, environment maps, lines, points, spot-

lights, meshes, etc.

If each pixel selects a different analytic type to sample, you likely inject both

execution divergence and cache thrashing into the per-pixel sampling code.

For instance, one pixel might sample a sphere light while its neighbors

sample a triangle and an environment map. If these three pixels are part

of a single GPU warp, the three sampling procedures will likely happen

serially (due to execution divergence) rather than in parallel.

By first creating buffers of presampled locations on each type of emissive,

and then feeding these buffers as input to the sample tiling in Section 7.2.1,

this execution divergence can be moved out of the inner loop.

Essentially, per pixel during the render loop, we sample from precomputed

point lights that all have the same structure. Some of these came from

sphere lights, some from triangles, some from environment maps, etc., but

the potentially expensive, per-primitive sampling procedures happen once

per frame in a coherent way.

7.2.3 Accelerating hybrid shift

Hybrid shift in ReSTIR PT performs random replay and vertex reconnection

to reuse a path. This includes multiple tasks: tracing new subpath, testing

visibility rays, and re-evaluating BSDFs. A naive implementation directly

following Algorithm 7 usually results in inflated shader time. This has two

main causes.

▶ A shader that contains multiple complex procedures that are depen-

dent on each other or have a nested structure often very high register

usage, lowering the warp occupancy, and potentially causes register

spilling to inflate memory cost.

▶ Having large execution divergence across threads can lower the

effective computation throughput. A small percentage of pixels

having path tracing work can be as expensive as all pixels doing path

tracing.

To tackle these problems, we recommend two optimizations:

1. Use smaller kernels instead of a big kernel: have a dedicated random

replay kernel that only does path tracing and a dedicated reconnection

kernel that performs BSDF re-evaluatation and visibility ray tests.
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2. Perform stream compaction to map threads only to non-empty ray

tracing tasks: since many path samples do not need random replay to

reconnect, performing path tracing in a compact way avoids having

idle threads running within the warp doing nothing.

But such optimizations have additional memory overhead: because the

RIS step happens after the complete evaluation of the target function 𝑝̂,

intermediate results of random replay (containing partial path throughput)

need to be written to the global memory in the end of the random replay

shader and read from the global memory in the reconnection shader. But

the additional memory overhead is usually small compared to overall

reduced shader time. Using the Veach Ajar scene for example, with the

first optimization, we have observed about 40% reduction in shader time

related to spatiotemporal resampling. The second optimization further

reduces 40% of shader time on top of the first optimization.



Experiences in game integration 8
Please see Pawel and Giovanni’s slides from SIGGRAPH 2023, available

on our course webpage, which discuss some of their key experiences and

take-aways from integrating ReSTIR into CD Project Red’s Cyberpunk 2077
as part of its RT Overdrive Mode and recent Phantom Liberty expansion.

https://intro-to-restir.cwyman.org/


Advice for getting started 9
As authors of this course, we have all thought about resampling and ReSTIR

for years. We’ve collectively written (and rewritten) code, prototypes, demos,

SDKs, and integrated ReSTIR into more complex code bases.

You should start simple.

Probably every ReSTIR implementation around today has confusing bits

you will not initially understand. This is akin to how usually everyone’s first

path tracer has “off by 𝜋” issues; as researchers and rendering engineers

we’re still wrapping our minds around how to best write this code in a

clean and understandable way. Sometimes the first paper is not the right

place to go, even if it’s simpler to understand. (Sorry.)

So some advice from us to you, after helping out numerous researchers

and engineers get up to speed on ReSTIR:

▶ Start with a simple ground-truth Monte Carlo path tracer. No need to

have fancy importance sampling, but it needs to run in the same

code, on the same scenes where you plan to use ReSTIR. You do not

want to spend months debugging your ReSTIR implementation or

integration only to discover, at the very end, that it is biased in some

unacceptable way. (This has happened.) You want to discover this

bias when you introduce it. Compare to ground truth. Frequently.

▶ Start simple, with basic RIS. Talbot’s basic RIS [6] is fairly straightfor-

ward to implement without bias. It’s pretty easy to understand. If

RIS will not converge to ground truth, neither will your experiments

with spatiotemporal reuse.

▶ Think about rendering bias. Most real-time engineers without an offline

rendering background never worry about bias... after all, we always

approximate in real-time rendering! Many of us felt the same way.

Now, we have all concluded that managing bias is super important,

even in game. With spatiotemporal sample reuse, bias spreads around

the screen extremely quickly. And with multi-bounce paths, it shows

up in extremely odd ways. Your art director may disapprove.

▶ Spatial reuse alone is easier to debug; combining with temporal reuse
gives better quality. Moving beyond basic RIS, next add spatial reuse.

Without scene changes between samples (as in temporal reuse), it

is much easier to validate. Spatial reuse should give clearly visible

improvement. But move on quickly after validating that spatial

reuse works correctly, since interleaving spatial and temporal reuse

improves quality much more significantly than spatial reuse alone.

▶ Don’t try to get too clever too fast. If you grab RTXDI [9], there are

a ton of options. Checkerboarding, sample permutations, boiling

suppression, etc., etc. Many were never intended to be unbiased, and

options may not have been tested in all permutations. Wait to try



9 Advice for getting started 49

clever techniques until you know the basics work (and you need the

improvements those clever techniques provide).

▶ Basic ReSTIR gives you probability distributions at a point. Generally, a

reservoir is not valid over, say, an entire voxel. You can store and use

reservoirs that way, but it is very difficult to avoid adding bias (and

magnifying correlations within the voxel).

▶ Reuse visibility very carefully. An original appeal of ReSTIR was the

ability to reduce ray budgets by reusing visibility samples. Visibility

reuse also causes many problematic biases people have great diffi-

culty debugging. (Arguably, it causes most difficult-to-debug biases.)

Consider always using visibility in your target functions and MIS

weights until you have validated your code works with full visibility.

Only then accelerate your algorithm by incrementally starting to

reuse ray queries.

▶ ReSTIR accelerates in multiple ways. One is by amortizing sample costs

across pixels. This benefit remains, even when not reusing visibility.

▶ Think a bit about ReSTIR as subsampling the integration domain. If doing

environment lighting using a light probe, an obvious way to gain

performance is to coarsen the probe texture. Now, if your integration

domain isn’t a hemisphere of incident colors, but rather a high-

dimensional path space, how do you "coarsen" that domain? Perhaps

you could reuse samples rather than tracing new independent ones

all the time?
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Abbreviations

GPU
graphics processing unit. 1

MC
Monte Carlo. 4–7

MIS
multiple importance sampling. vi, 6, 8–14, 28, 32, 33, 37–42

NEE
next-event estimation. 27, 28, 31–33

PDF
probability density function. v, 1, 2, 4–14, 38

ReSTIR
reservoir-based spatiotemporal importance resampling. vi, 1, 4–6, 9, 37–46

RIS
resampled importance sampling. v, 1, 3, 4, 7–14, 37, 38, 44–46

RNG
random number generator. 33

WRS
weighted reservoir sampling. 15



Symbols

Page
List

Symbol Description Notation

6, 9 𝑚(𝑋) The MIS weight of the random variable 𝑋. MIS weight

8, 9 𝑤𝑖 The probability of selecting candidate 𝑖 from the list

of candidates (𝑋1 , . . . , 𝑋𝑀).
resampling weight

22 𝑇 A shift mapping. shift mapping

5 supp(𝑋), supp( 𝑓 ) The support of a random variable 𝑋 or a function 𝑓 . support

9 𝑝̂(𝑥) The target function at 𝑥. target function

9 𝑝̄(𝑥) The target PDF at 𝑥. target PDF

7–9 𝑊𝑋 The unbiased contribution weight of 𝑋. If 𝑋 has

known PDF 𝑝(𝑋), use 𝑊𝑋 = 1

𝑝(𝑥) .
unbiased contribution weight
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